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Abstract

Structural vector autoregressive models with regime-switching variances have been used to
test structural identification strategies. In these models the transition probabilities are assumed
to be constant over time. In reality these probabilities may depend on certain economic fun-
damentals that help predicting turning points. This paper is the first to introduce time varying
probabilities into structural VAR model that is identified via volatility. A generalized Expectation-
Maximization algorithm is developed for estimation of the model. For empirical illustration the
model is applied to test two sets of assumptions used for identification of uncertainty shocks. A
formal test rejects the hypothesis that uncertainty shocks do not influence macroeconomics vari-
ables on impact but support the alternative of non-negligible contemporaneous effects.
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Non-technical summary
In structural vector autoregressive (SVAR) models, it is critical for structural shocks to be identi-
fied convincingly, since impulse response analysis could be sensitive to various restrictions that are
assumed for identification purposes. For this reason a large number of papers in recent years have
heteroscedasticity for identification. SVAR models with Markov regime switching in variances are
particularly widely applied. The transition probabilities are assumed to be constant over time in that
strand of literature.

This paper is the first to introduce time-varying transition probabilities into Markov-switching
structural VAR models that are identified through volatility. We let the transition probabilities depend
on various economic fundamentals through a logistic function so that information that help predict
turning points can be used. Using the regime switching variances lets us adopt statistical tests to
discriminate between competing conventional identification schemes. We estimate the model using
maximum likelihood and a flexible EM algorithm.

In the empirical application we use US data and investigate two different types of identification
strategy for uncertainty shocks. The first strategy is based on the hypothesis that an uncertainty shock
may have contemporaneous effects on macroeconomic variables. The alternative strategy assumes
that uncertainty shocks have no contemporaneous impact on the macroeconomic variables.

Our estimation results lead to several new insights. The information criteria of the model show
that the Markov-switching model with time varying transition probabilities outperforms the standard
model with constant probabilities. It turns out that the seven-quarter moving average of GDP growth
is the most preferred transition variable if compared to lagged inflation, federal funds rate and GDP
by the means of information criteria. The likelihood ratio test rejects the identification scheme that
forces the uncertainty shocks to have no impact on macro variables, but the alternative allowing the
uncertainty shock to have contemporaneous effects on macroeconomic variables is supported by the
data. This finding demonstrates the power of our method for differentiating between the economic
assumptions that are used for identification purposes.
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1 Introduction
In structural vector autoregressive (SVAR) models, it is critical for structural shocks to be identified
convincingly, since impulse response analysis could be sensitive to various restrictions that are as-
sumed for identification purposes. Moreover, it is often hard to find economic theories that are able
to justify the identifying restrictions. For this reason a large number of papers in recent years have
used statistical properties of the data such as heteroscedasticity for identification (Rigobon and Sack
(2003), Lanne and Lütkepohl (2008), and Lütkepohl and Netšunajev (2017b)). SVAR models with
Markov regime switching in variances are particularly widely applied, as in Lanne, Lütkepohl and
Maciejowska (2010) and Herwartz and Lütkepohl (2014), and can be used to test different types of
structural identification schemes.

However, it is assumed in the strand of literature that uses Markov-switching in variances for iden-
tification that the transition probabilities are constant over time. These probabilities may actually vary
over time in reality though, and can depend on some underlying economic fundamentals (see Diebold,
Lee and Weinbach (1994), Filardo (1994), and Bazzi, Blasques, Koopman and Lucas (2017)). This
paper is the first to address this issue by introducing time-varying transition probabilities into Markov-
switching structural VAR models that are identified through volatility. We let the transition probabil-
ities depend on various economic fundamentals through a logistic function so that information from
economic fundamentals that help predict turning points can be used. We develop a generalised ex-
pectation maximisation (EM) algorithm to estimate the model. Using the regime switching variances
lets us adopt statistical tests to discriminate between competing conventional identification schemes,
which is in the spirit of Lanne and Lütkepohl (2008) and Herwartz and Lütkepohl (2014).

As an empirical illustration, we investigate two different types of identification strategy for uncer-
tainty shocks in a system in a similar way to Caggiano, Castelnuovo and Groshenny (2014). Starting
from the work by Bloom (2009), a growing number of papers have studied the role of uncertainty
in the economy (see Alexopoulos and Cohen (2009), Bachmann, Elstner and Sims (2013), Colombo
(2013), Nodari (2014), and Baker, Bloom and Davis (2016)). Linear structural VAR models are
particularly used in many empirical papers for identifying uncertainty shocks. To the best of our
knowledge no studies provide a formal test for differentiating between various assumptions for iden-
tifying uncertainty shocks. Our framework provides over-identifying information through changes in
variances so as to test different types of identification scheme formally.

Our estimation results shed new light on several issues. Most importantly, the information cri-
teria of the model show that the Markov-switching model with time varying transition probabilities
outperforms the standard model with constant probabilities. The choice of the economic fundamental
that governs the transition probabilities plays the key role in our analysis and so we estimate mod-
els with many alternative candidates, such as lagged unemployment, lagged federal funds rates, and
lagged GDP growth rates. Following Auerbach and Gorodnichenko (2012), Bachmann and Sims
(2012), Berger and Vavra (2014) and Caggiano et al. (2014), we also consider the moving averages of
seven quarter-on-quarter GDP growth rates as a candidate. It turns out that the seven-quarter moving
average of GDP growth is the most preferred transition variable according to the information criteria.

Further, our model allows us to test identifying restrictions formally, while in the conventional
SVAR setup it is impossible to discriminate between different structural assumptions. The VAR
studies on uncertainty shocks, including Caggiano et al. (2014), Alexopoulos and Cohen (2009), and
Nodari (2014), typically assume recursive zero restrictions. Two different types of identification strat-
egy are considered in Caggiano et al. (2014). The first specification is based on the hypothesis that an

4



uncertainty shock may have contemporaneous effects on macroeconomic variables. The alternative
specification assumes that uncertainty shocks have no contemporaneous impact on the macroeco-
nomic variables. The likelihood ratio test rejects the identification scheme that forces the uncertainty
shocks to have no impact on macro variables, but the alternative allowing the uncertainty shock to
have contemporaneous effects on macroeconomic variables is supported by the data.

The remainder of the paper is organised as follows. Section 2 sets up the SVAR model with
time varying transition probabilities and discusses how it can be estimated and used for identification
purposes. The empirical example analysing the relation between economic policy uncertainty and US
unemployment is discussed in Section 3. The last section summarises the conclusions from our study.

2 The regime switching model with time varying transition prob-
abilities

2.1 The model setup
Consider the standard VAR model of order p:

yt = v + A1yt−1 + . . .+ Apyt−p + ut. (1)

where yt is the K × 1 vector of variables of interest, v is the K × 1 intercept terms, Ais are the
K × K coefficient matrices, and ut is the vector of reduced form residuals which has zero mean
and covariance matrix Σu. In order to obtain economically meaningful structural residuals εt with
zero mean and identity covariance matrix, a linear transformation is commonly used: ut = Bεt or
Aut = εt. In the conventional case the identifying restrictions are usually imposed on the matrix B
or on its inverse A = B−1.

Now let the distribution of ut depend on a Markov process st withM discrete states, st ∈ 1 . . .M .
The transition probabilities are usually assumed to be constant over time: pij = Pr(st = j|st−1 = i),
but here we allow them to be time varying. Specifically, we follow Diebold et al. (1994) and let the
transition probabilities depend on a vector of economic fundamentals xt and assume that they evolve
according to a logistic function. In a simple two-regime case the matrix of transition probabilities Pt
is:

Pt =

 p11t = e
x′t−1β11

1+e
x′t−1β11

p21t = 1− p22t
p12t = 1− p11t p22t = e

x′t−1β22

1+e
x′t−1β22

.

The superscripts in pijt indicate that a switch from regime i to regime j takes place and βij is a vector
of the parameters to be estimated. For the case with three regimes, the transition probability matrix
is:

p11t = e
x′t−1β11

1+e
x′t−1β11+e

x′t−1β12
p21t = e

x′t−1β21

1+e
x′t−1β21+e

x′t−1β22
p31t = 1− p32t − p33t

p12t = e
x′t−1β12

1+e
x′t−1β11+e

x′t−1β12
p22t = e

x′t−1β22

1+e
x′t−1β21+e

x′t−1β22
p32t = e

x′t−1β32

1+e
x′t−1β32+e

x′t−1β33

p13t = 1− p11t − p12t p23t = 1− p21t − p22t p33t = e
x′t−1β33

1+e
x′t−1β32+e

x′t−1β33


Structural shocks in the model can be identified by the assumption that only the variances of the

shocks change across states while impulse responses are not affected, meaning that the instantaneous
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effects are the same across the states. If there are just two regimes with positive definite covariance
matrices Σ1 Σ2, it is known that a matrix B exists that satisfies Σ1 = BB′ and Σ2 = BΛ2B

′ where
Λ2 is a diagonal matrix with positive diagonal elements Λ2 = diag(λ21, ...λ2K). Lanne et al. (2010)
prove that the matrix B is unique up to changes in sign, given that the diagonal elements of Λ2 are
distinct and ordered in a certain way. Therefore, any restrictions set upon B in a conventional VAR
model become over-identifying in our framework.

For the case with more than two regimes, the covariance matrices are decomposed in the same
way: Σ1 = BB′, Σi = BΛiB

′, i = 2, ...,M , where Λi are diagonal matrices. The condition for the
B to be unique is that if one pair of diagonal elements from Λ2 are the same, there must be another
pair of distinct diagonal elements from some other Λi. For example, if λ2k = λ2l, then there must
be a pair λik, λil so that λik 6= λil from i = 3, ...,M . Unfortunately there are no formal tests to see
whether the pairwise inequality λik 6= λil holds in the estimated model. Testing a null hypothesis
of no identification H0 : λ21 = λ22 implies that some parameters are not identified under H0 and
standard χ2 asymptotic properties are not valid (Lütkepohl and Netšunajev, 2017a).

2.2 The estimation
We use maximum likelihood estimation based on a log-likelihood function derived from conditional
normality: given the state, the distribution of ut is assumed to be normal, so ut|st ∼ N(0,Σst).
The log likelihood function is highly nonlinear, so numerical optimisation techniques are required.
Therefore we adopt the expectation maximisation (EM) algorithm of Herwartz and Lütkepohl (2014),
which builds on Diebold et al. (1994) for the actual likelihood optimisation task. The iterative algo-
rithm consists of an expectation step where the estimates of the unobserved regime probabilities are
obtained, and a maximisation step where the transition parameters, structural parameters and VAR
parameters are estimated.

The expectation step of the algorithm closely follows Kim (1994), Krolzig (1997) and Herwartz
and Lütkepohl (2014). In the smoothing part of the expectation step we introduce the filter from Kim
(1994), which is not part of the algorithm of Diebold et al. (1994). By doing this we economise on
the iterations needed to compute the smoothed regime probabilities that incorporate the information
from the full sample.

In the maximisation step the transition parameters, the structural parameters and the VAR param-
eters are estimated. We add an additional step to the maximisation part of the algorithm of Herwartz
and Lütkepohl (2014) to estimate the transition parameters βij . As the first order conditions of the
likelihood function are nonlinear in βij , we use linear approximation of pijt around βn−1ij , which comes
from the previous iteration. Consider β11 as an example:

p11t (βn11) ≈ p11t (βn−111 ) +
∂p11t (β11)

∂β11

∣∣∣
β11=β

n−1
11

(β11 − βn−111 ).

When the linear approximations are further substituted for the probabilities into the first order con-
ditions, the conditions become linear and may be rearranged to give the closed form solution for
βij .

Even though we obtain closed form solutions to the estimate for the transition probabilities, the
structural parameters B and Λm,m = 2, ...,M still have to be estimated by numerical methods. The
objective function is nonlinear and can have several local optimums, so we run the estimation over
various initial values. With those estimates in hand the VAR parameters of the model are obtained
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by generalised least squares as in Herwartz and Lütkepohl (2014). The detailed procedure of our
algorithm is given in the Appendix.

3 Macroeconomic impact of uncertainty shocks

3.1 The data
We apply our method to a four dimensional VAR and study the effects of uncertainty shocks on the
real economy, following Caggiano et al. (2014) closely. Since the seminal paper by Bloom (2009), a
growing number of research papers have studied the impact of uncertainty shocks on macroeconomic
variables. One strand of the literature has studied the role of uncertainty shocks in dynamic stochastic
general equilibrium models. Another strand used VAR models to identify uncertainty shocks and
study their effects. This paper contributes to the second strand of literature by extracting information
from heteroscedasticity for the identification of uncertainty shocks.

There are various measures of uncertainty, with the most widely used being the CBOE’s Volatility
Index (VIX), which is an index of 30-day option-implied volatility in the S&P 500 stock index, and the
economic policy uncertainty index (EPU), which is based on newspaper coverage frequency. Baker
et al. (2016) show that the two measures move closely together, but the EPU index shows stronger
responses to political events such as the election of a new president, the September 11 attacks, or
political debates over taxes and government spending, while the VIX has a stronger connection to
events in financial markets such as the Asian financial crisis. Furthermore, the VIX only covers pub-
licly traded firms, which account for around a third of private employment (see Davis, Haltiwanger,
Jarmin and Miranda (2007)), but the EPU index reflects not only stock market volatility but also ma-
jor political events that affect employment on a national level. Although Caggiano et al. (2014) use
the VIX index in their paper, we prefer the EPU measure, given the availability of the data and their
relevance for unemployment analysis.

The VAR contains the following vector of variables yt = (EPUt, πt, Ut, FFRt)
′. The variables

are defined in the following way:

• EPUt stands for the economic policy uncertainty index developed by Baker et al. (2016), which
is a proxy for uncertainty;

• the inflation rate πt is calculated as the quarter-on-quarter percentage growth rate of the implicit
GDP deflator;

• Ut is the civilian unemployment rate;

• FFRt is the federal funds rate.

Quarterly observations of monthly data are constructed by quarterly averaging. The sample runs
from 1962Q3 to 2012Q3, as in Caggiano et al. (2014). The source of the EPU index is the website
http://www.policyuncertainty.com/, while the other time series are obtained from the FRED database
provided by the Federal Reserve Bank of St. Louis.
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3.2 Model comparison
The summary statistics for the estimated models are shown in Table 1. We report the log likelihood
and Akaike information criterion (AIC) for different types of model, among them a linear VAR model,
the Markov-switching model with constant transition probabilities, and the Markov-switching model
with time-varying transition probabilities (TVTP). Results are reported for the Markov-switching
models for both two-regime and three-regime specifications. The lag order is selected to be three
for all models as derived from the AIC of the linear VAR. The choice of the information criterion is
based on the simulation study by Luetkepohl and Schlaak (2017), who report the AIC to be slightly
advantageous for model selection purposes in heteroscedastic SVARs.

Table 1: Comparison of VAR(3) Models for the period 1962Q3–2012Q3
Model Fundamentals logLT AIC
VAR(3), linear none –1408.72 2941.44

MS-SVAR with constant transition probability
MS, 2 regimes none –1273.59 2695.18
MS, 3 regimes none –1247.74 2659.49

MS-SVAR with time varying transition probability
MS-TVTP, 2 regimes (1; ∆GDP t−1) –1268.57 2689.14
MS-TVTP, 3 regimes (1; ∆GDP t−1) –1234.14 2656.29
MS-TVTP, 3 regimes, state invariant B (1; ∆GDP t−1) –1236.67 2649.34
MS-TVTP*, 3 regimes, state invariant B (1; ∆GDP t−1) –1239.79 2651.58

Note: LT – likelihood function, AIC = −2 logLT + 2×no of free parameters, SC = −2 logLT + log T×no of free
parameters. ∆GDP t−1 is the seven-quarter moving average of GDP growth rates. MS-TVTP* is the model with two
extra zero restrictions on the transition parameters, which improves the estimation efficiency and remains very close to
the MS-TVTP model in terms of the AIC. Since the MS-TVTP model produces several large standard errors, we use the
MS-TVTP* model as the benchmark in the following analysis.

The transition variable plays a key role in our analysis, so we estimate and compare models with
various transition variables, including lags of inflation, lags of unemployment, lags of the federal
funds rate, and lags of GDP growth rates. We also consider the moving average involving seven
realisations of quarter-on-quarter GDP growth rates, following Auerbach and Gorodnichenko (2012),
Bachmann and Sims (2012), Berger and Vavra (2014) and Caggiano et al. (2014). Of these transition
variables, the moving average of GDP growth rates, denoted as ∆GDP t−1, performs best according
to the AIC. Though we omit GDP from the VAR system to stay close to Caggiano et al. (2014), it is
worth noting that Auerbach and Gorodnichenko (2012) and Bachmann and Sims (2012) include GDP
in the VAR part of the model and still find the lagged moving average outperforms the alternative
transition variables. We focus on the models with this transition variable in what follows.

Moreover, the choice of the number of regimes is also critical for our analysis. Following Psaradakis
and Spagnolo (2006) and Herwartz and Lütkepohl (2014), we use the information criteria as the tool
for selecting the number of regimes. Judged by this criterion, the model without any regime switch-
ing performs the worst, while the model with time varying transition probabilities with three regimes
performs best. This finding is also supported by the plot of the standardised residuals of the linear
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VAR model and of the MS-TVTP 3-regime model in Figure 1. The residuals of the model that takes
the changing volatility into account are much more regular than those of the standard VAR model.
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(a) Residuals of the linear VAR model
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(b) Residuals of the Markov switching model with time varying probabilities

Figure 1: Residuals of various models

We have noticed that the MS-TVTP 3-regime model produces very large standard errors in part of
the transition parameters, and therefore we estimated different specifications that restrict some of the
transition parameters to zero. We found that the MS-TVTP* model with two extra zero restrictions on
the transition parameters in the second regime is very close to the MS-TVTP model in its maximum
log likelihood and AIC, but improves the estimation efficiency substantially. The p-value of the like-
lihood ratio test is 0.044, which only marginally indicates support for the restrictions. Nevertheless
we take this model as the benchmark model in the analysis and discussion of the robustness of our
findings. The estimated parameters of the transition function for the MS-TVTP* 3-regime specifica-
tion are reported in Table 2. They are estimated quite precisely with the standard errors being mostly
smaller than the estimates.

Figure 2 compares the estimated smoothed regime probabilities from two different models. The
subfigure on the top displays the regime probabilities estimated for the model that lets the transition
probabilities depend on the moving averages of GDP growth rates. The first regime, which is the
most volatile one, covers a period in the beginning of the 1970s, the beginning of the 1980s, and
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Table 2: Estimated transition parameters and their standard errors

β11 β12 β21 β22 β32 β33
Estimate(intercept) 5.28 –1.94 –0.53 –3.64 28.83 –18.09
Estimate(slope) 4.68 –3.91 0 0 13.73 –5.77
Std.err.(intercept) 4.56 1.88 3.64 6.50 12.45 7.79
Std.err.(slope) 5.91 9.17 0 0 7.08 3.15

Note: This table reports the estimated transition parameters from the MS-TVTP* 3-regime model.

the recent financial crisis. The second regime covers most of the first half of the 2000s and the
recovery period following the financial crisis. The third regime, which represents the least volatile
regime, covers almost the whole period from 1984 to 2008 with a few exceptions. The timing of
this low volatility regime corresponds to the well-known phenomenon named the Great Moderation.
The graph at the bottom shows the estimated regime probabilities of the model that assumes constant
transition probabilities.

There are noticeable differences when the assumption of constant transition probabilities is im-
posed. The MS-TVPT* model estimates for example that a short period consequent to the 2008
financial crisis is in the most volatile state. Given the depth of the recession in 2008 it is reasonable
to think that it should be in the period of high volatility. In contrast, MS(3) estimates the 2008 finan-
cial crisis to be in a relatively calm state. Meanwhile, the whole period from the end of the 1960s
to the beginning of the 1980s is estimated by MS(3) to be constantly in the most volatile regime.
MS-TVPT* finds though that certain intervals in this period are also relatively calm. This may be
intuitive economically as the time between the oil crises in the 1970s may be considered a period of
lower volatility.

The estimated time varying transition probabilities in Figure 3 provide more evidence for the
importance of relaxing the constant transition probability assumption. An example is p21t , which
represents the probability of switching from the medium regime to the most volatile regime. This
probability p21t takes the value of zero for most of the sample, but towards the end of the sample for
the period around the 2008 financial crisis it rises to a half, which suggests that it is highly likely that
the underlying state will switch from the medium regime to the most volatile regime. If constant tran-
sition probabilities are assumed, they would look like a straight horizontal line, and the information
contained in the moving averages of the GDP growth rates for the transition probabilities would have
been lost.

3.3 Analysis of identification strategies
We next proceed by analysing the structural shocks identified using the model proposed. It is im-
portant to check whether the estimated model is identified by at least comparing the pairs of relative
variances. The estimates of these parameters along with their standard errors in our preferred model
are shown in Table 3. Where no formal tests for identification exist, the standard errors of the vari-
ances have to be examined (Lütkepohl and Netšunajev, 2017a). For the preferred three state model
with time varying transition probabilities, the estimates of the Λ2 and Λ3 matrices are quite precise
and heterogeneous with standard errors much lower than the corresponding point estimates. Thus
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(a) MS-TVTP* 3-regime model with time varying transition probabilities
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(b) MS 3-regime model with constant transition probabilities

Figure 2: A comparison of estimated smoothed regime probabilities

Note: State 1 is the state with the highest volatility. State 2 is the state with medium volatility and State 3 is the one with
the lowest volatility.
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Figure 3: Time varying transition probabilities

there are good reasons to believe that we have additional information on volatility and that the struc-
tural matrix B is well identified and the tests for restrictions have power.

The two types of Cholesky ordering are to be tested next, as in Caggiano et al. (2014). The first or-
dering, yt = (EPUt, πt, Ut, FFRt)

′, which assumes that the uncertainty shocks contemporaneously
affect macroeconomic variables, fits the economic intuition well. However, even though the second
ordering counter-intuitively assumes that uncertainty shocks cannot have impact effects on macroeco-
nomic indicators on impact, it is shown by Caggiano et al. (2014) that the responses of unemployment
to an uncertainty shock under the second ordering look very similar to those under the first ordering.

Table 3: Estimated relative variances of the MS(3) model with state invariant B

Parameter Estimate Standard error
λ21 0.09 0.10
λ22 8.75 5.75
λ23 0.30 0.19
λ24 0.03 0.03
λ31 0.20 0.10
λ32 0.94 0.54
λ33 0.16 0.10
λ34 0.03 0.01
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Now that we have additional information from the changes in volatility, we could test whether
either of the two Cholesky orderings can be confirmed by the data. The results of testing are presented
in Table 4. Under the assumption of two regimes, neither Cholesky ordering can be rejected, but this is
not the case for the three regime specifications. With three regimes, we first have to test the structural
covariance matrix decomposition where H0: Σ1 = BB′, Σ2 = BΛ2B

′, Σ3 = BΛ3B
′, and an

alternative where the covariance matrices are fully unrestricted. We do not reject the decomposition
for MS-TVPT* received from the LR test with six degrees of freedom and a value of 5.06 and p =
0.53∗. Thus we proceed by testing the Cholesky orderings of interest.

Given three regimes, the identification scheme B1 in Table 4 assuming that the uncertainty shocks
have contemporaneous effects on macroeconomic variables cannot be rejected with p = 0.57. On
the contrary, the Cholesky ordering B2 assuming that uncertainty shocks cannot have instantaneous
impact effects on macroeconomic variables is rejected with p = 0.04†. These results indicate that the
model with only two regimes may lack information that is needed for identification. The model with
three regimes captures the pattern of volatility better, and thus the estimated variances of structural
shocks are much more distinct. The LR test is more powerful for the case with three regimes.

Table 4: Tests for different identification schemes
H0 H1 df LR statistic p-value
B1 MS-TVTP, 2 regime 6 6.34 0.39
B2 MS-TVTP, 2 regime 6 10.02 0.12
B1 MS-TVTP*, 3 regime, state invariant B 6 4.82 0.57
B2 MS-TVTP*, 3 regime, state invariant B 6 13.04 0.04

Note: The identification strategy B1 stands for the six zero restrictions on the upper triangular part of the B matrix in
the spirit of the Cholesky decomposition with the variables ordered as yt = (EPUt, πt, Ut, FFRt)

′. The identification
strategy B2 represents the six zero restrictions on B when the EPU index is ordered as the last variable in the VAR system
yt = (πt, Ut, FFRt, EPUt)

′. The models under H1 impose no identifying restrictions, while the models under H0 are
restricted with the identification scheme B1 or B2.

The existing literature did not take a clear stand on whether uncertainty shocks should be thought
of as affecting the macroeconomic variables on impact or not. While many researchers assumed the
uncertainty shock affected the economy on impact and based their analysis on such assumptions, no
formal argument was proposed. Our analysis exploiting information from changes in volatility is able
to distinguish between the two hypotheses. We find support for the identification scheme that uses the
non-negligible contemporaneous effects of uncertainty shocks on macroeconomic variables.

∗The LR test leads to the same conclusion for the MS-TVPT model.
†For the MS-TVPT model, the Cholesky ordering B2 is also rejected at the 5% significance level.
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4 Conclusions
In the paper we propose a structural vector autoregressive model where the changes in volatility are
governed by a Markov process with time varying transition probabilities. Time varying transition
probabilities are assumed to depend on fundamental economic variables. The structural parameters
of the model are identified with changes in the volatility of shocks. Additional information that comes
from the time variation in the variances of structural shocks allows conventional identifying restric-
tions to be tested. We estimate the model using maximum likelihood and a flexible EM algorithm.

In the empirical illustration of our model, we apply this method to identify uncertainty shocks
following the study by Caggiano et al. (2014). Based on the information criteria our model with time
varying transition probabilities fits the example data better than a standard Markov-switching model
like that in Lanne et al. (2010), which assumes constant transition probabilities. This is most likely
due to the useful information contained in the transition variable, which in our case is the moving
average of seven quarter-on-quarter GDP growth rates.

With extra information extracted from changes in variances we test the two different types of iden-
tification strategy used in Caggiano et al. (2014). Using the preferred three regime MS-TVTP model,
we reject the identification strategy that restricts the uncertainty shocks to have no contemporaneous
effects on macroeconomic variables. However, we do not reject the alternative identification strategy
that allows for these contemporaneous effects to be present. This finding demonstrates the power
of our method for differentiating between the economic assumptions that are used for identification
purposes.
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A Appendix. Estimation of the MS-SVAR model with time-varying
transition probabilities

The section describes in detail the expectation maximization (EM) algorithm based on Krolzig (1997),
Herwartz and Lütkepohl (2014) and Diebold et al. (1994), and presents the estimation procedure for
structural VAR model with changes in volatility of shocks where the transition probability matrix is
also allowed to vary over time.

Definitions
The baseline model is the VAR(p) of the form:

yt = v + A1yt−1 + · · ·+ Apyt−p + ut.

Denote:
M - number of states, assumed to be three in this appendix,
K - number of variables in the vector y,
p - number of lags.
Let the matrixX = [x0, x1, ..., xT ] contain transition variables up to T with the entries for specific

t given by a (J + 1)× 1 vector xt of J economic variables that affect the transition probabilities and
a leading one for a constant.

Define ξt =

 I(st = 1)
...

I(st = M)

, then E(ξt) =

 Pr(st = 1)
...

Pr(st = M)

, where I() is an indicator function

which takes value 1 if statement in the argument is true and 0 otherwise.

Further define

ξt|s = E(ξt|Ys, Xs) =

 Pr(st = 1|Ys, Xs)
...

Pr(st = M |Ys, Xs)

, where Ys = (y1, ..., ys), Xs = (x0, ..., xs)

Next:

ξ
(2)
t|T =



Pr(st = 1|st−1 = 1, YT , X)
...

Pr(st = 1|st−1 = M,YT , X)
...

Pr(st = M |st−1 = 1, YT , X)
...

Pr(st = M |st−1 = M,YT , X)


.

We let the transition probability matrix to be time varying for M state Markov process. Define Pt
as the time varying transition matrix, which yields ξt+1|t = Ptξt|t, for t = 0, 1, ..., T − 1. Advancing
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on Diebold et al. (1994) we shows the closed form solutions for estimating models with M = 2 and
M = 3 as these appear to be the most important in practice. Expressions for models with M > 3
may be derived analogously. The individual elements of the Pt matrix evolve as logistic functions of
x′t−1βij . Then βij is the (J + 1) × 1 vector of parameters. It is convenient to collect the individual

βij vectors into a matrix β = [β11 β22] for 2 regimes and β =

[
β11 β21 β32
β12 β22 β33

]
for 3 regimes. The

matrix β0 denotes the initial values for the transition parameters. The matrix Pt is defined as:

Pt =

 Pr(st+1 = 1|st = 1, β, xt−1) . . . P r(st+1 = 1|st = M,β, xt−1)
... . . . ...
Pr(st+1 = M |st = 1, β, xt−1) . . . P r(st+1 = M |st = M,β, xt−1)


The following matrices illustrate the details. Note that the subscripts for βij and superscripts for pijt
denote transition from state i to state j. Transition probability matrix for M = 2: p11t = e

x′t−1β11

1+e
x′t−1β11

p21t = 1− p22t
p12t = 1− p11t p22t = e

x′t−1β22

1+e
x′t−1β22


Transition probability matrix for M = 3:

p11t = e
x′t−1β11

1+e
x′t−1β11+e

x′t−1β12
p21t = e

x′t−1β21

1+e
x′t−1β21+e

x′t−1β22
p31t = 1− p32t − p33t

p12t = e
x′t−1β21

1+e
x′t−1β11+e

x′t−1β12
p22t = e

x′t−1β22

1+e
x′t−1β21+e

x′t−1β22
p32t = e

x′t−1β32

1+e
x′t−1β32+e

x′t−1β33

p13t = 1− p11t − p12t p23t = 1− p21t − p22t p33t = e
x′t−1β33

1+e
x′t−1β32+e

x′t−1β33



Next define ηt =

 f(yt|st = 1, Yt−1, Xt−1)
...

f(yt|st = M,Yt−1, Xt−1)

,

where f() is conditional distribution function:

f(yt|st = m,Yt−1, Xt−1) = (2π)−K/2 det(Σm)−1/2 exp(−0.5u′tΣ
−1
m ut).

Covariance matrices have decomposition as previously described: Σ1 = BB′,Σm = BΛmB
′ for

m = 2, ...,M

Further the following notation is used:
� elementwise multiplication,
� elementwise devision,
⊗ Kronecker product,
IK is a K ×K dimensional identity matrix,
1M = (1, ..., 1)′ is a M × 1 dimensional vector of ones,
θ = vec(v, A1, A2, ..., AP ) is the vector of VAR coefficients
Z ′t−1 = (1, y′t−1, y

′
t−2, ..., y

′
t−p) is the matrix of ones and lagged observations.
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Initial values
The following starting values are used for the iterations:

Pt is calculated for given X and β0 for 1, ..., T .

θ̂ = vec(v̂, Â1, ..., Âp) =

[
T∑
t=1

Zt−1Z
′
t−1 ⊗ IK

]−1 T∑
t=1

(Zt−1 ⊗ IK)yt

B = T−1(
T∑
t=1

ûtû
′
t)

1/2 +B0 , where ût = yt − (Z ′t−1 ⊗ IK)θ̂

and B0 is a matrix of random numbers coming form standard normal distribution and scaled by a
factor of 10−5.

Λ1 = IK ,Λm = cmIK ,m = 2, ...,M

ξ0|0 = M−11M

Expectation step
For given Pt, θ,Σm,m = 1, 2, ...,M and ξ0 = ξ0|0 the following parameters are computed:

ηt for t = 1, 2, ..., T ,

ξt|t =
ηt�Ptξt−1|t−1

1′M (ηt�Ptξt−1|t−1)
, for t = 1, 2, ..., T .

ξt|T = (P ′t(ξt+1|T � Ptξt|t))� ξt|t, for t = T − 1, ..., 0.

ξ
(2)
t|T = vec(P ′t)� ((ξt+1|T � Ptξt|t)⊗ ξt|t), for t = 1, ..., T − 1.

Maximization step

Estimation of transition parameters β
Given the smoothed probabilities, the expected complete-data log likelihood are non-linear in the β
transition parameters. Taking into account the logistic transition function, the first order conditions
for β are given as follows:

M = 2:∑T
t=2 xt−1 {Pr(st = 1|st−1 = 1, YT , X)− p11t Pr(st−1 = 1|YT , X)} = 0,∑T
t=2 xt−1 {Pr(st = 2|st−1 = 2, YT , X)− p22t Pr(st−1 = 2|YT , X)} = 0,

M = 3:∑T
t=2 xt−1 {Pr(st = 1|st−1 = 1, YT , X)− p11t Pr(st−1 = 1|YT , X)} = 0,∑T
t=2 xt−1 {Pr(st = 2|st−1 = 1, YT , X)− p12t Pr(st−1 = 1|YT , X)} = 0,
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∑T
t=2 xt−1 {Pr(st = 1|st−1 = 2, YT , X)− p21t Pr(st−1 = 2|YT , X)} = 0,∑T
t=2 xt−1 {Pr(st = 2|st−1 = 2, YT , X)− p22t Pr(st−1 = 2|YT , X)} = 0,∑T
t=2 xt−1 {Pr(st = 3|st−1 = 2, YT , X)− p32t Pr(st−1 = 3|YT , X)} = 0,∑T
t=2 xt−1 {Pr(st = 3|st−1 = 3, YT , X)− p33t Pr(st−1 = 3|YT , X)} = 0.

Using the following Taylor approximation of the elements of Pt matrix, we find the closed-form so-
lution for all β vectors. Consider β11 as an example:
p11t (βn11) ≈ p11t (βn−111 ) +

∂p11t (β11)

∂β11

∣∣∣
β11=β

n−1
11

(β11 − βn−111 )

where βn−111 is the β11 coming from the previous iteration of the algorithm. The closed-form solutions
for β are given as follows.

M = 2:

β11 =


∑T

t=2 x1,t−1Pr(st−1 = 1|YT , X)p111t . . .
∑T

t=2 x1,t−1Pr(st−1 = 1|YT , X)p11Jt
... . . . ...∑T

t=2 xJ,t−1Pr(st−1 = 1|YT , X)p111t . . .
∑T

t=2 xJ,t−1Pr(st−1 = 1|YT , X)p11Jt


−1

×


∑T

t=2 x1,t−1

{
Pr(st = 1|st−1 = 1, YT , X)− Pr(st−1 = 1|YT , X)[p11t − β

j−1
11

∂P 11
t

∂β11
]
}

...∑T
t=2 xJ,t−1

{
Pr(st = 1|st−1 = 1, YT , X)− Pr(st−1 = 1|YT , X)[p11t − β

j−1
11

∂P 11
t

∂β11
]
}


β22 =


∑T

t=2 x1,t−1Pr(st−1 = 2|YT , X)p221t . . .
∑T

t=2 x1,t−1Pr(st−1 = 2|YT , X)p22Jt
... . . . ...∑T

t=2 xJ,t−1Pr(st−1 = 2|YT , X)p221t . . .
∑T

t=2 xJ,t−1Pr(st−1 = 2|YT , X)p22Jt


−1

×


∑T

t=2 x1,t−1

{
Pr(st = 2|st−1 = 2, YT , X)− Pr(st−1 = 2|YT , X)[p22t − β

j−1
22

∂P 22
t

∂β22
]
}

...∑T
t=2 xJ,t−1

{
Pr(st = 2|st−1 = 2, YT , X)− Pr(st−1 = 2|YT , X)[p22t − β

j−1
22

∂P 22
t

∂β22
]
}


M = 3:

β11 =


∑T

t=2 x1,t−1Pr(st−1 = 1|YT , X)p111t . . .
∑T

t=2 x1,t−1Pr(st−1 = 1|YT , X)p11Jt
... . . . ...∑T

t=2 xJ,t−1Pr(st−1 = 1|YT , X)p111t . . .
∑T

t=2 xJ,t−1Pr(st−1 = 1|YT , X)p11Jt


−1

×


∑T

t=2 x1,t−1

{
Pr(st = 1|st−1 = 1, YT , X)− Pr(st−1 = 1|YT , X)[p11t − β

j−1
11

∂P 11
t

∂β11
]
}

...∑T
t=2 xJ,t−1

{
Pr(st = 1|st−1 = 1, YT , X)− Pr(st−1 = 1|YT , X)[p11t − β

j−1
11

∂P 11
t

∂β11
]
}

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β12 =


∑T

t=2 x1,t−1Pr(st−1 = 1|YT , X)p121t . . .
∑T

t=2 x1,t−1Pr(st−1 = 1|YT , X)p12Jt
... . . . ...∑T

t=2 xJ,t−1Pr(st−1 = 1|YT , X)p121t . . .
∑T

t=2 xJ,t−1Pr(st−1 = 1|YT , X)p12Jt


−1

×


∑T

t=2 x1,t−1

{
Pr(st = 2|st−1 = 1, YT , X)− Pr(st−1 = 1|YT , X)[p12t − β

j−1
12

∂P 12
t

∂β12
]
}

...∑T
t=2 xJ,t−1

{
Pr(st = 2|st−1 = 1, YT , X)− Pr(st−1 = 1|YT , X)[p12t − β

j−1
12

∂P 12
t

∂β12
]
}


β21 =


∑T

t=2 x1,t−1Pr(st−1 = 2|YT , X)p211t . . .
∑T

t=2 x1,t−1Pr(st−1 = 2|YT , X)p21Jt
... . . . ...∑T

t=2 xJ,t−1Pr(st−1 = 2|YT , X)p211t . . .
∑T

t=2 xJ,t−1Pr(st−1 = 2|YT , X)p21Jt


−1

×


∑T

t=2 x1,t−1

{
Pr(st = 1|st−1 = 2, YT , X)− Pr(st−1 = 2|YT , X)[p21t − β

j−1
21

∂P 21
t

∂β21
]
}

...∑T
t=2 xJ,t−1

{
Pr(st = 1|st−1 = 2, YT , X)− Pr(st−1 = 2|YT , X)[p21t − β

j−1
21

∂P 21
t

∂β21
]
}


β22 =


∑T

t=2 x1,t−1Pr(st−1 = 2|YT , X)p221t . . .
∑T

t=2 x1,t−1Pr(st−1 = 2|YT , X)p22Jt
... . . . ...∑T

t=2 xJ,t−1Pr(st−1 = 2|YT , X)p221t . . .
∑T

t=2 xJ,t−1Pr(st−1 = 2|YT , X)p22Jt


−1

×


∑T

t=2 x1,t−1

{
Pr(st = 2|st−1 = 2, YT , X)− Pr(st−1 = 2|YT , X)[p22t − β

j−1
22

∂P 22
t

∂β22
]
}

...∑T
t=2 xJ,t−1

{
Pr(st = 2|st−1 = 2, YT , X)− Pr(st−1 = 2|YT , X)[p22t − β

j−1
22

∂P 22
t

∂β22
]
}


β32 =


∑T

t=2 x1,t−1Pr(st−1 = 3|YT , X)p321t . . .
∑T

t=2 x1,t−1Pr(st−1 = 3|YT , X)p32Jt
... . . . ...∑T

t=2 xJ,t−1Pr(st−1 = 3|YT , X)p321t . . .
∑T

t=2 xJ,t−1Pr(st−1 = 3|YT , X)p32Jt


−1

×


∑T

t=2 x1,t−1

{
Pr(st = 2|st−1 = 3, YT , X)− Pr(st−1 = 3|YT , X)[p32t − β

j−1
32

∂P 32
t

∂β32
]
}

...∑T
t=2 xJ,t−1

{
Pr(st = 2|st−1 = 3, YT , X)− Pr(st−1 = 3|YT , X)[p32t − β

j−1
32

∂P 32
t

∂β32
]
}

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β33 =


∑T

t=2 x1,t−1Pr(st−1 = 3|YT , X)p331t . . .
∑T

t=2 x1,t−1Pr(st−1 = 3|YT , X)p33Jt
... . . . ...∑T

t=2 xJ,t−1Pr(st−1 = 3|YT , X)p331t . . .
∑T

t=2 xJ,t−1Pr(st−1 = 3|YT , X)p33Jt


−1

×


∑T

t=2 x1,t−1

{
Pr(st = 3|st−1 = 3, YT , X)− Pr(st−1 = 3|YT , X)[p33t − β

j−1
33

∂P 33
t

∂β33
]
}

...∑T
t=2 xJ,t−1

{
Pr(st = 3|st−1 = 3, YT , X)− Pr(st−1 = 3|YT , X)[p33t − β

j−1
33

∂P 33
t

∂β33
]
}


where pii1t, · · · , piiJt are denoting the elements in the vector of partial derivatives as used in the Taylor
approximation.

Estimation of structural parameters B and Λm :

Define Tm =
T∑
t=1

ξmt|T , where ξmt|T denotes the m-th element of the vector ξt|T . Estimation of B and

Λm is done by minimizing the likelihood function:

l(B,Λ2, ..., ,ΛM) = T log det(B) + 1
2

(
B′−1B−1

T∑
t=1

ξ1t|T ûtû
′
t

)
+

M∑
m=2

[
Tm
2

log det(ΛM) + 1
2
tr

(
B′−1Λ−1M B−1

T∑
t=1

ξmt|T ûtû
′
t

)]
.

Then compute:
Σ̂1 = B̂B̂′, Σ̂m = B̂Λ̂mB̂

′ for m = 2, ...,M

Estimation of VAR parameters:
Estimates of the parameter vector θ are given by:

θ̂ =

[
M∑
m=1

(
T∑
t=1

ξmt|TZt−1Z
′
t−1

)
⊗ Σ̂−1m

]−1 T∑
t=1

(
M∑
m=1

ξmt|TZt−1 ⊗ Σ̂−1t

)
yt

Initial regime probabilities are updated according to:
ξ0|0 = ξ0|T

Convergence Criteria
Relative change in the value of the log-likelihood function is used as convergence criteria. The log-
likelihood is evaluated for given Pt, θ,Σm,m = 1, 2, ...,M and ξ0|0 in the end of the expectation step.
Given:

ηt for t = 1, 2, ..., T ,
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ξt|t−1 = Ptξt−1|t−1, for t = 1, 2, ..., T ,

ξt|t =
ηt�Ptξt|t−1

1′M (ηt�Ptξt|t−1)
, for t = 1, 2, ..., T .

The log likelihood is:

logLT =
T∑
t=1

log f(yt|Yt−1),

f(yt|Yt−1) = ξ′t|t−1ηt.

Estimation of β,B, Λm and θ are iterated until convergence, i.e. relative change ∆ in the log-
likelihood is negligibly small (does not exceed tolerance value α = 10−9) for k-th and (k − 1)-th
rounds of iterations:

∆ = logLT (k)−logLT (k−1)
logLT (k−1)

< α .
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