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In this paper we contribute to the literature on the identification
of macroeconomic shocks by proposing a Bayesian SVAR with time-
varying volatility of innovations that depend on a hidden Markov pro-
cess, referred to as an MS-SVAR. With sufficient statistical informa-
tion in the data, the distinct volatility regimes of the errors allow all the
structural SVAR matrices and impulse response functions to be identi-
fied without the need for conventional a priori parameter restrictions.
We give mathematical identification conditions and propose a flexible
Gibbs sampling approach for the posterior inference on MS-SVAR pa-
rameters. The new methodology is applied to the US, euro area and
Estonian macroeconomic series, where the effects of monetary policy
and other shocks are examined.
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Non-technical summary

Structural vector autoregressions are popular tools of modern empirical
macroeconomics, widely used in monetary policy analysis and other appli-
cations to examine dynamic interactions and the effects of various shocks on
real and nominal macroeconomic aggregates. A central issue of this research
is the identification of structural shocks, such as monetary policy, aggregate
demand and aggregate supply shocks, where the conventional approach used
in most empirical research in the area requires restrictions to be placed directly
on the structural vector autoregression parameters. However, recent literature
has raised some criticism of the conventional approach: even if the identify-
ing assumptions imposed are based on a widely accepted economic idea, there
may still be a gap between the data and the theoretical model, leading to a po-
tentially biased inference from the dynamic reactions of model variables and
confounding the development of new theories.

In this study we depart from the traditional shock identification approach
and use additional statistical information, available in many macroeconomic
data series as the time-varying volatility of error terms, to help identify struc-
tural parameters and interpret shocks. We model the volatility states of the
errors using a hidden Markov process, referring to the new framework as the
Markov switching structural vector autoregression. We show how existing
mathematical results allow a statistical identification of the structural parame-
ters in at least two volatility regimes, without the need for any a priori identi-
fying assumptions to be imposed. We apply Bayesian statistical inference for
parameter estimation and shock identification in the new framework.

The new methodology is validated using the medium-scale monetary pol-
icy systems of the USA and the euro area, and a small-scale model with an
interest rate premium for the Estonian economy. Previous empirical research
has shown that the US macroeconomic data since the mid-1960s have been
characterised by the time-varying volatility of macroeconomic shocks, while
the remaining model parameters can be considered stable. A similar set of re-
sults is gained from the euro area macroeconomic data starting from the early
1970s. We find sufficient volatility information in our data samples to be able
to identify and disentangle a full set of shocks for every estimated model in
our empirical applications. Furthermore, we undertake a careful economic
interpretation of the identified shocks by looking at their short-run impacts
and impulse responses, comparing them with the existing literature and find-
ing consistent economic narratives for every shock in our empirical models.
The shock identification in our models is achieved without the a priori iden-
tifying restrictions that are common in other empirical studies. Although we
are mostly interested in the monetary policy and risk premium shocks, our
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statistical identification methodology enables us simultaneously to disentan-
gle and attach economic interpretations to other structural macroeconomic in-
novations, such as aggregate demand, aggregate supply, and money demand
shocks.

We also point out that the results of our statistical shock identification pro-
cedure are not always compatible with the traditional short run and sign iden-
tification schemes used in much of the recent empirical literature, which war-
rants further careful validation and checking of the existing results using the
new identification methodology in this paper as well as other alternative ap-
proaches.
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1. Introduction

Structural vector autoregressions (SVARs) are well-known tools of mod-
ern empirical macroeconomics, widely used in monetary policy analysis and
other applications to examine dynamic interactions and the effects of various
shocks on real and nominal macroeconomic aggregates. A central issue in
SVAR analysis is the reliable and robust identification of structural shocks,
where the conventional approach used in most of empirical research in the
area calls for restrictions to be placed on the SVAR parameters that deliver the
statistical identification of the model; see Sims (1980), Blanchard and Quah
(1989), Amisano and Giannini (1997), Canova and De Nicolo (2002), among
many others. However, recent literature has raised some criticism of the just-
identifying and sign restrictions, detailed in Lütkepohl (2012) and Lütkepohl
and Netšunajev (2013). Even if the imposed identifying assumptions are based
on a widely accepted economic idea, there may still be a gap between the data
and the theoretical model, leading to a potentially biased inference on the dy-
namic reactions of model variables and confounding the development of new
theories.

In this study we use additional statistical information, available in many
macroeconomic data series in the form of time-varying volatility of VAR error
terms, to help with the identification of structural parameters and the inter-
pretation of shocks within a modified SVAR framework along the lines of
Rigobon (2003) and Lanne and Lütkepohl (2008). We model the volatility
states of the errors by a hidden Markov process, similar to that used in Lanne,
Lütkepohl and Maciejowska (2010), referring to the overall framework as an
MS-SVAR. We show how existing mathematical results enable a statistical
identification of SVAR structural matrices in the case of at least two volatility
regimes, without the need to impose any a priori identifying assumptions.

Recently, a handful of applied studies have been published on shock iden-
tification in SVAR models through volatility regimes using the maximum like-
lihood estimator; see Bacchiocchi and Fanelli (2012) and Netšunajev (2013),
among others. In the present study we depart from the maximum likelihood
approach and resort to the Bayesian statistical inference for parameter estima-
tion and shock identification in the MS-SVAR framework. The latter has sev-
eral advantages over the classical approach: it enables us to get a full picture of
the posterior effects of different shocks, proving invaluable in validating the
identifying assumptions and finding convincing economic narratives for the
observed structural shocks in estimated models. Furthermore, the Bayesian
approach is less sensitive to likelihood function irregularities and numerical
maximization complexities, which can be a particularly daunting issue in the
hidden Markov models; see Herwartz and Lütkepohl (2011). At the same
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time, Bayesian inference requires the postulation of suitable priors, depends
on intricate numerical algorithms and tends to be computationally demanding.

Our empirical applications are focused on the medium-scale monetary pol-
icy VARs for the US and the euro area (EA), and a small-scale VAR model
with an interest rate premium for the Estonian economy. As pointed out
by Primiceri (2005) and Sims and Zha (2006), the US macroeconomic data
since the mid-1960s have been characterized by the time-varying volatility of
macroeconomic shocks, while the remaining reduced-form system parame-
ters can be considered stable. A similar set of results is reported in Rubio-
Ramirez, Waggoner and Zha (2005) for the EA macroeconomic data series
starting from the early 1970s. We find sufficient volatility information in our
data samples to be able to identify and disentangle a full set of shocks for ev-
ery estimated model in our empirical application. Furthermore, we undertake
a careful economic interpretation of the identified shocks by looking at their
posterior short-run impacts and impulse responses, comparing them with the
existing literature and finding consistent economic narratives for every shock
in our empirical models. The shock identification in our empirical MS-SVAR
models is achieved without the a priori identifying restrictions that are com-
mon in the empirical SVAR studies. Although we are mostly interested in
the monetary policy and risk premium shocks, our statistical identification
methodology enables us simultaneously to disentangle and attach economic
interpretations to other structural macroeconomic innovations, such as aggre-
gate demand, aggregate supply, and money demand shocks.

The rest of the paper is organized as follows. Section 2 describes the MS-
SVAR model and the identification of its parameters through the time-varying
volatility of the innovations. Section 3 gives a detailed overview of the Gibbs
sampler-based Bayesian inference for the new model. Section 4 presents three
empirical applications of the MS-SVAR model and illustrates the practical
shock identification issues: the model is applied to samples of the US, the EA
and Estonian data, which cover different time periods and have vastly different
amounts of statistical information in the estimated volatility regimes. Finally,
the last section concludes and proposes some potential directions for future
research.
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2. Econometric specification and model identifi-
cation

Let the time evolution of an n × 1 vector yt of endogenous variables be
given by the following SVAR model:

A0yt = k0 + k1t+ A1yt−1 + . . .+ Apyt−p + εt(st) , (1)

where k0 and k1 are (optional) deterministic intercept and linear trend param-
eters respectively, A0 is a general n × n contemporaneous parameter matrix,
A1, . . . ,Ap are autoregressive matrices, and εt(st) is a vector of serially un-
correlated structural innovations that depends on the hidden state parameter
st ∈ {1, . . . ,m}. We assume the following conditional distribution of the
structural innovations:

εt(st) | st ∼ Normal( 0,D(st) ) ,

where {D(s) : 1 ≤ s ≤ m} is a family of distinct n × n diagonal matri-
ces, where D(1) ≡ I is imposed for identification. When m = 1, this model
reduces to the textbook SVAR case; see Hamilton (1994), Amisano and Gi-
annini (1997) and Lütkepohl (2005). When the hidden state parameter st is
Markov and the number of states is greater than one, we call the model (1) a
“Markov-switching structural vector autoregression” (MS-SVAR).

Assuming that the contemporaneous parameter matrix A0 is non-singular,
the model can be written in the usual reduced-form VAR style with time-
varying volatility of errors:

yt = c0 + c1t+ Φ1yt−1 + . . .+ Φpyt−p + ut(st) , (2)

where ci = A−10 ki for each 0 ≤ i ≤ 1, Φj = A−10 Aj for each 1 ≤ j ≤ p,
and:

ut(st) | st ∼ Normal( 0,Σ(st) ) ,

where Σ(s) = A−10 D(s)A′−10 for each volatility state s ∈ {1, . . . ,m}, giving
rise to the family of reduced-form variance-covariance matrices {Σ(s) : 1 ≤
s ≤ m}. Model (2) forms the basis for writing down the likelihood function
of the sample data in Section 3.

Consider model (1) premultiplied by an arbitrary conformable unitary ma-
trix U:1

UA0yt = Uk0 + Uk1t+ UA1yt−1 + . . .+ UApyt−p + Uεt(st) . (3)

1A square matrix U is said to be unitary, if U∗U = I, where an asterisk denotes a
Hermitian adjoint. If U consists of real elements, it is called real orthogonal; see Horn and
Johnson (2013).
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The familiar SVAR identification issue in the case of m = 1 manifests itself
in the observational equivalence between the reduced-form VAR model (2)
and any of the (infinitely many) SVAR models in (3); see Rubio-Ramirez,
Waggoner and Zha (2010). Traditional identification schemes impose restric-
tions on the system matrices A0, . . . ,Ap, so that a unique SVAR model can
be pinned down among a multitude of observationally equivalent ones, where
the restrictions fall into one of the following categories:

• The short-run restrictions of Sims (1980), recursive schemes of Chris-
tiano, Eichenbaum and Evans (1999) and non-recursive identification
of Gordon and Leeper (1994) impose direct (zero) restrictions on the
elements of A0 or A−10 which are motivated by some theoretical consid-
erations, but do not allow testing of their statistical validity;

• The long-run identification schemes of Blanchard and Quah (1989) re-
strict certain combinations of A0 and the autoregressive parameters A1,
. . . ,Ap, but this approach is often insufficient to draw out statistical
information about the shocks of interest and cannot be statistically veri-
fied;

• The sign restrictions of Canova and De Nicolo (2002) and Uhlig (2005)
use theory-based assumptions on short-run responses to certain shocks,
leaving the underlying SVAR model essentially unidentified; see Rubio-
Ramirez et al. (2005).

In contrast to the traditional schemes above, the burden of SVAR identifica-
tion in this paper is shifted from the restrictions on system matrices A0, . . . ,Ap

to certain conditions on the number and the uniqueness of the volatility states
in (1). Consider model (3) when m > 1; for each s ∈ {1, . . . ,m}, the
variance-covariance matrix of structural innovations is given by:

EUεt(s)εt(s)
′U′ = UD(s)U′ .

In general, the right hand side matrix in this expression differs from D(s) for
s > 1, whereby the model identification is achieved by choosing {D(s) : 1 ≤
s ≤ m} such that the variance-covariance structure of innovations in (3) is
preserved only for a trivial set of unitary matrices U.2 A sufficient condition on
{D(s) : 1 ≤ s ≤ m} that identifies the model through volatility in this way is
given in Proposition 1 of Lanne et al. (2010), requiring each pair of structural
innovations in (1) to have distinct variances in at least one of the volatility

2For example, U consisting of plus or minus ones on the main diagonal will preserve the
variance-covariance structure of the innovations in (3). But this corresponds to the case of
flipping the shock signs and presents just a normalization issue, since the economic impact of
structural innovations remains unchanged.
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states in the model. In other words, we pin down a unique SVAR model using
assumptions on {D(s) : 1 ≤ s ≤ m}, leaving the system matrices A0, . . . ,Ap

free of a priori restrictions.3

From the econometric perspective, the main challenge is to recover the con-
temporaneous parameter matrix A0 from the reduced-form VAR model (2),
specifically from the family of variance-covariance matrices {Σ(s) : 1 ≤ s ≤
m}. A result in matrix analysis states that for any pair of Hermitian matrices
Σ1 and Σ2, where at least one is positive definite,4 there exists a non-singular
matrix A such that both A′Σ1A and A′Σ2A are diagonal; see Theorem 7.6.4
in Horn and Johnson (2013). To the best of our knowledge, no mathematical
results of a similar generality exist for when there are more than two matrices;
in other words, without further assumptions, no diagonalizaton of a family of
(positive definite) Hermitian matrices Σ1, . . . ,Σm by joint ∗congruence can
be achieved when m > 2.5 Therefore, we limit our empirical applications in
Section 4 to the case of two volatility states, where the recovery of the con-
temporaneous parameter matrix A0 is guaranteed by the existing mathematical
result without any additional restrictions.6

In short, the MS-SVAR model (1) can be identified by imposing certain re-
quirements on the number of volatility states, m, and the variance-covariance
matrices of structural innovations {D(s) : 1 ≤ s ≤ m}, but otherwise without
any additional restrictions on the system matrices A0, . . . ,Ap. This offers a
crucial advantage over the usual identification schemes, where the shape and
nature of the orthogonalized impulse response functions may be altered in the
identification process. The alternating volatility regimes of the structural in-
novations, on the other hand, enable us to draw out a full and unrestricted con-
temporaneous parameter matrix A0 together with its sibling — the short-run
impact matrix A−10 , and to disentangle different shocks by looking at the esti-
mated responses of system variables and suitable economic narratives without
imposing a priori assumptions on how the shocks ought to affect the system
dynamics.

3Although a unique SVAR model is statistically identified, the resulting shocks lack an
economic interpretation. A suitable narrative for the identified shocks ought to be found by a
careful analysis of the estimated short-run impacts and impulse responses, and consultation of
the relevant theoretical and empirical literature. This procedure is similar to the one used by
Lütkepohl and Netšunajev (2013) for checking sign restrictions, and is carried out in Section 4.

4In full generality, it is sufficient that a real linear combination of Σ1 and Σ2 is positive
definite.

5Two square matrices B and C are said to be ∗congruent, if there exists a non-singular
matrix A such that A∗BA = C; see Horn and Johnson (2013).

6Without doubt, the case with more than two volatility states is interesting from both the
applied and theoretical perspectives. Such an extension, however, does not appear to be trivial
in the Bayesian context.
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3. Statistical inference

We use a Bayesian approach to obtain statistical inference on the relevant
model parameters in the MS-SVAR model (1). It is well known that the poste-
rior inference based on the full likelihood function in hidden Markov models
is complex and computationally expensive; see Marin, Mengersen and Robert
(2005). Among several proposed solutions to this issue, the Gibbs sampler
combined with data augmentation is the most popular in the applied literature.
In this paper we use the Gibbs sampler in the context of a hidden Markov
model for the volatility of innovations; see Carter and Kohn (1994), Chib
(1996) and Krolzig (1997).

Assume, in the context of the MS-SVAR model (1), that the hidden volatil-
ity state evolution is given by:

st | st−1 ∼ Markov( P,η0 ) ,

where the m×m matrix P governs the conditional distribution of state transi-
tions, and s0 is distributed according to the m-dimensional vector η0. The tra-
jectory of hidden states ST := {s1, . . . , sT} is obtained by simulation, where
T denotes the sample size, and conditional on this, the reduced-form variance-
covariance matrices {Σ(s) : 1 ≤ s ≤ m} can be estimated using the VAR
model residuals split across different volatility states. Bayesian inference on
the remaining parameters β := vec(c0, c1,Φ1, . . . ,Φp) is similar to the usual
GLS estimator of the linear regression model with heteroscedastic innovations;
see Geweke (1993) and Krolzig (1997).

More specifically, our Gibbs sampler for the MS-SVAR model includes the
following four steps, repeated over the desired number of iterations:7

1. ST is generated by drawing in reverse time order from the posterior dis-
tribution:

p(st |YT , st+1) ∝ p(st |Yt) · p(st+1 | st) , (4)

where the first term in the expression is generated recursively using Chib
(1996) Bayesian simulation algorithm for hidden Markov models. It
involves the prediction:

p(st |Yt−1) =
m∑
s=1

p(st | st−1 = s) · p(st−1 = s |Yt−1) ,

7As usual in the recursive Bayesian simulation algorithms, each step of the Gibbs sampler
depends partially on the previous iterative draw; see Robert and Casella (2004). We econo-
mize on the notation by only showing dependence on Gibbs draws within the same sampler
iteration. In addition, all Gibbs sampler expressions in this section are conditioned on the
“pre-sample” observations y0, . . . ,y1−p.
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and update steps:

p(st |Yt) ∝ p(st |Yt−1) · `(yt |Yt−1; β,Σ(st)) ,

where Yt denotes sample data up to 1 ≤ t ≤ T , and `(yt |Yt−1;β,Σ(st))
is the Gaussian likelihood function of yt for a given volatility state
st ∈ {1, . . . ,m};

2. Given a simulated trajectory ST from the previous step, the Markov
transition kernel P is updated element-by-element, where for each s ∈
{1, . . . ,m} the posterior probability of leaving the volatility state s is
given by the following discrete distribution:8

ps |YT , ST ∼ Dirichlet(αs1 + ns1(ST ), . . . , αsm + nsm(ST ) ) , (5)

where {αsk : 1 ≤ s, k ≤ m} are hyper-parameters of the Dirichlet prior
for P, and nsk(ST ) is the number of transitions from state s to state k in
the given trajectory ST ;

3. The posterior distributions of the reduced-form variance-covariance ma-
trices for each state s ∈ {1, . . . ,m} are given by:

Σ−1(s) |YT , ST ∼Wishart( [C(s) + C̄(s)]−1, τ(s) + T (s) ) , (6)

where the family of n × n non-singular matrices {C(s) : 1 ≤ s ≤ m}
and scalars {τ(s) : 1 ≤ s ≤ m} are hyper-parameters of the Wishart
priors for {Σ(s) : 1 ≤ s ≤ m}, and C̄(s) are estimated variance-
covariance matrices of model residuals belonging to a particular volatil-
ity state s, and 0 ≤ T (s) ≤ T is the number of occurrences of s in
ST :

C̄(s) :=
T∑
t=1

ūt(β) ū′t(β) · 1{st = s} , T (s) :=
T∑
t=1

1{st = s} ,

ūt(β) := yt − c0 − c1t−Φ1yt−1 − . . .−Φpyt−p ;

4. The posterior distribution of the reduced-form VAR coefficients is Gaus-
sian:

β |YT , ST , {Σ(s) : 1 ≤ s ≤ m} ∼ Normal( b̄, B̄ ) , (7)

where parameters of this distribution are given by the usual GLS expres-
sions:

b̄ = B̄ (X′ ⊗ In) Ω(ST )y , B̄ =
[
(X′ ⊗ In) Ω(ST ) (X⊗ In)

]−1 ,

8For mathematical details on Dirichlet and Wishart distributions see Poirier (1995).
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where the nT × nT block-diagonal matrix Ω(ST ) is defined as follows:

Ω(ST ) :=

 Σ−1(s1) . . . 0
... . . . ...
0 . . . Σ−1(sT )

 ,

where y := (y′1, . . . ,y
′
T )′ is a nT × 1 data vector, and each row of a

T × (2 + np) data matrix X contains the following elements:

(1, t,y′t−1, . . . ,y
′
t−p) .

The most direct and computationally economical way of incorporating
normal informative priors about β into (7) is to use the dummy variable
approach of Theil and Goldberger (1961).

A recursive iteration on (4) to (7) produces, after a pre-specified number
of burn-in steps, a sequence of posterior draws of ST , β, and the variance-
covariance matrices {Σ(s) : 1 ≤ s ≤ m}. Posterior sampling of the contem-
poraneous parameter matrix A0 of the MS-SVAR model (1) relies on the pre-
viously cited matrix decomposition result in the case of two volatility states:9

Σ−1(1) = A′0A0 , Σ−1(2) = A′0 D(2)−1A0 ,

which is guaranteed to exist for any two positive definite Hermitian matrices
Σ−1(1) and Σ−1(2) produced by the Gibbs sampler, and is unique up to the
column signs of A0 when the identification conditions of Lanne et al. (2010)
are satisfied. We also note that Lanne et al. (2010) conditions are required not
just for the MS-SVAR identification and posterior inference on A0, but also
to provide a sufficient degree of separation between the volatility states and
the achievement of reliable simulations of the ST trajectories using the Chib
(1996) algorithm.

Given posterior simulations of A0 together with reduced-form VAR matri-
ces Φ1, . . . ,Φp, posterior impulse responses can be drawn in the usual man-
ner; see Hamilton (1994) and Lütkepohl (2005). In all empirical applications
in Section 4 we show median responses together with the corresponding point-
wise 68% posterior credible sets.

9The proof of Theorem 7.6.4 (a) on page 487 of Horn and Johnson (2013) can serve as a
template for the computer implementation of this matrix decomposition result.
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4. Empirical applications

4.1. The US monetary policy

Stock and Watson (2002), Primiceri (2005), Sims and Zha (2006), Justini-
ano and Primiceri (2008) and many others note that US macroeconomic dy-
namics since the mid-1960s have been characterized by a time-varying volatil-
ity of shocks, while the remaining reduced-form VAR parameters can be con-
sidered time-invariant. This view is consistent with what is called the “good
luck” explanation of the Great Moderation since the mid-1980s.10 In this paper
we use this empirical regularity of the US data for the statistical identification
of shocks using the MS-SVAR framework outlined in Section 2.

The US macroeconomic data are quarterly and seasonally adjusted, cov-
ering the time period from 1964Q2 to 2009Q4. The data are supplied by the
Federal Reserve Bank of St. Louis FRED database.11 Per capita aggregates
are computed using the US civilian non-institutional population aged from 16
years up. Figure 1 shows the data:12

• Output growth rate (∆yt) is defined as scaled quarter-on-quarter log real
GDP per capita changes;

• Inflation rate (πt) is defined as scaled quarter-on-quarter log changes of
personal consumption expenditures core price index;

• Real money balances (Mt) is defined as the sum of de-trended log in-
verse money velocity13 and log real output per capita;

• Monetary policy interest rate (rt) is defined as the average quarterly fed-
eral funds rate.

Using these data, we have estimated a MS-SVAR model with three au-
toregressive lags and two volatility states using the Gibbs sampler set out in

10A comprehensive account of the Great Moderation and an up-to-date literature survey on
the topic can be found in Davis and Kahn (2008).

11All data series are downloaded from research.stlouisfed.org/fred2
12As a robustness check, in all our applications in this section we have used de-trended

output in place of the output growth rates as an alternative business cycle measure, and a GDP
deflator-derived inflation measure as a substitute for headline consumer inflation. Our main
empirical results and conclusions remain unchanged.

13Inverse money velocity is calculated as a ratio of the quarterly sweep-adjusted M2 money
stock and quarterly nominal GDP; see Cynamon et al. (2006).
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Figure 1: The US macroeconomic data series

Section 3.14 The augmentation choice is a compromise between the two lags
preferred by the Bayesian information criteria and the five lags favored by the
Akaike information criteria, and it takes into account the fact that real output
enters the model in the log-differenced form. Our findings are robust with re-
spect to the augmentation, with no substantial changes in reported results for
two or four autoregressive lags in the empirical model.

The following priors are used in the model estimated for the US data: the
hyper-parameters of the Dirichlet prior on the elements of the Markov transi-
tion kernel P are αsk = 10 for s = k and αsk = 1 for s 6= k, where s, k ∈
{1, 2}. The Wishart prior hyper-parameters on the reduced-form variance-
covariance matrices Σ(1) and Σ(2) are given by C(1) = 0.350 · I, C(2) =
0.175 · I, τ(1) = 12, and τ(2) = 6. Non-informative priors on β are used
for the remaining parameters of the model. The prior selection is primarily
focused on achieving a reliable separation between the two volatility states in
the US sample, helping to avoid the label-switching issue that often plagues
empirical applications of hidden Markov models. At the same time, the flat
β priors impose minimum a priori conditions on the economically important
parts of the model.

The average of the simulated ST trajectories is shown in Figure 2. State 1
is the high volatility state, which can clearly be associated with the periods
of economic downturn and uncertainty following the first and the second oil
crises in the early 1970s and 1980s, and the 2007–2009 Global Financial Cri-
sis. State 2 is the low volatility state, capturing several short tranquil periods in
1960s, mid-1970s, and the long Great Moderation period from the mid-1980s

14In all empirical applications in this section we run the Gibbs sampler loop for 2000
iterations, starting from a suitable prior distribution draw, and use the last 500 simulations for
calculating posterior statistics. All the computations in this paper are carried out in the Ox
matrix programming language; see Doornik (2007).
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Figure 2: Average of simulated ST trajectories for the US data
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Figure 3: Prior (dashed line) and posterior (solid line) distributions of D(2)
for the US data

until the outbreak of the 2007–2009 Global Financial Crisis. The two volatility
states are prominent in the US sample and are well in line with the profession’s
consensus on US macroeconomic history over the last five decades; see Stock
and Watson (2002) and Sims and Zha (2006). Economic history aside, from
the perspective of this paper, the well pronounced volatility regimes in the US
data should allow us to draw out a complete set of statistically identified and
meaningful macroeconomic shocks in our model.

The condition for local identification of A0 in a two-state MS-SVAR model
requires all the diagonal elements of D(2), henceforth denoted as d1(2), . . . ,
dn(2), to be distinct; see Section 2 and Lanne et al. (2010). The priors and
posteriors of d1(2), . . . , d4(2) for the US data are shown in Figure 3. While the
data are clearly informative about d1(2), . . . , d4(2), we additionally compute
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Table 1: 68% and 90% posterior credible sets of D(2) for the US data

D(2) 68% set 90% set
d1(2) [0.0245, 0.0645] [0.0194, 0.0751]
d2(2) [0.1067, 0.2518] [0.0921, 0.2764]
d3(2) [0.1735, 0.4048] [0.1515, 0.4695]
d4(2) [0.4300, 1.1792] [0.3616, 1.3095]

68% and 90% posterior credible sets in order to check whether the diagonal
elements of D(2) are distinct from each other at the given levels. Computed
posterior credible sets are shown in Table 1, from where it follows that d1(2)
and d4(2) are well separated in both cases. On the other hand, the posterior
distributions of d2(2) and d3(2) elements partly overlap in the 68% and 90%
level cases, and the 90% level sets of d3(2) and d4(2) also appear to intersect.
This has strong implications for the posterior short-run effects and impulse
responses: while the first and fourth shocks are likely to be well identified in
the estimated model, it may be more difficult to isolate and attach economic
interpretations to the second and third shocks in the US data model.

It should be recalled that the contemporaneous parameter matrix A0 and,
by extension, the short-run impact matrix A−10 are identified only up to the
signs of their rows or columns; see Section 2. In the application to the US data
we normalize the short-run impact matrix such that the initial effects of the
first shock on rt (column one of A−10 ), of the second shock on πt (column two
of A−10 ), of the third shock on ∆yt (column three of A−10 ), and of the fourth
shock on Mt (column four of A−10 ) are all positive. The prior and posterior
distributions of the elements of the short-run impact matrix A−10 are shown
in Figure 4. Again, we find the US data reasonably informative about A−10 ,
especially in the first and the last columns of the matrix. We also observe
that the posterior distributions of the two middle columns tend to be wider
and in some cases exhibit bi-modality; this is likely to be a consequence of
insufficient separation between the d2(2) and d3(2) diagonal elements of D(2)
and the resulting identification difficulties.

By examining the last row of A−10 in Figure 4, we can identify a “mone-
tary policy shock” in the estimated system: rt shows the strongest immediate
reaction to the first shock, while in the other columns the biggest initial reac-
tions are associated with variables other than rt.15 The first shock increases the

15Since the identification methodology in this paper is statistical and does not impose a
priori economic meaning to different shocks, it is necessary to examine meticulously all the
available statistical evidence before attaching interpretations to particular shocks. The inter-
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Figure 4: Prior (dashed line) and posterior (solid line) distributions of A−10 for
the US data
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policy rate as a result of normalization, with an estimated immediate positive
impact on prices and a negative one on real money balances, while the instan-
taneous reaction of real output remains ambiguous. In terms of the short-run
impact, our “monetary policy shock” is close to its sibling in Uhlig (2005),
apart from the opposite reaction of πt. More specifically, we also find that
the initial real output response is ambiguous and the money supply tightens
on impact. The opposite reaction of prices, on the other hand, is likely to be
explained by the imposed identification assumption in Uhlig (2005), while in
our case the positive initial reaction of πt appears to be a feature of the US data
delivered by our identification methodology. Importantly, the estimated poste-
rior distribution of the immediate πt reaction to our “monetary policy shock”
in Figure 4 is predominantly concentrated on the positive half-line, which has
strong implications for the sign identification approach of Uhlig (2005): while
the negative initial effects on πt andMt are within the domain of our posterior,
the probability of this reaction mix appears to be quite low.16

Similar discrepancies in terms of the short-run monetary policy impact on
πt are observed between the traditional recursive and non-recursive identifica-
tion schemes of Christiano et al. (1999) and Gordon and Leeper (1994) and

pretation of shocks in estimated MS-SVAR models should be based on their short-run impact,
posterior impulse responses and theoretical considerations, all taken together and carefully
weighted. On its own, the strongest initial reaction of rt to the first shock may not be suf-
ficient to justify its labeling; our interpretation of this shock also stems from the posterior
impulse responses, which are detailed later in this section.

16In a tri-variate monetary SVAR, estimated without real money and identified using sign
restrictions, Castelnuovo and Surico (2010) relax the assumption of the non-positive response
of prices to a monetary policy shock and find strong evidence in favour of the “price puzzle”.
However, they claim that this finding is limited to the pre-1980 US sample, before the start of
the Volcker reserve targeting regime; see also Boivin and Giannoni (2006).
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the results shown in Figure 4. It is common in the traditional schemes to al-
low the money supply to tighten on impact, while assuming a reaction lag of
both real output and prices to a contractionary monetary policy shock. Our
statistical identification approach, on the other hand, yields a strong positive
reaction of prices on impact and takes us back to the classical “price puzzle”
result of Sims (1992). In contrast to the recent literature, Sims allows for an
immediate reaction of real and nominal quantities to a monetary policy shock
and finds a pronounced initial response of prices, common across several al-
ternative datasets and model specifications. Further investigation of the strong
positive initial reaction of πt to a contractionary monetary policy shock and its
implications for the traditional identification schemes is warranted.17

The other well-identified part of A−10 in Figure 4 is the last column, corre-
sponding to the short-run impact effect of the fourth shock in the estimated
system. As explained above, d4(2) is sufficiently well separated from the
other three diagonal elements of D(2), and the posterior distributions in the
last column of A−10 have regular shapes, distinct from the corresponding pri-
ors. The fourth shock increases real money due to the adopted normalization,
having a strong positive effect on the real output, a weaker negative impact
on the policy rate, and an uncertain immediate effect on prices. We label this
shock a “money demand shock”, partly because the nature of its immediate
impact bears some resemblance to the available empirical evidence in Favara
and Giordani (2009) and others, and partly due to theoretical considerations
whereby the money supply is linked to the Federal Reserve policy and there-
fore already subsumed by the first shock in our system.

Because of the identification issues in our estimated US data model, the re-
maining two shocks do not appear to exhibit clear and well pronounced short-
run effects on the system variables; see the two middle columns in Figure 4.
We will offer a plausible interpretation of these two shocks after examining
their posterior impulse responses.

The posterior impulse response functions together with the point-wise 68%
credible sets, estimated for the US data, are shown in Figure 5.18 Our prelim-
inary shock identification exercise, based on the posterior short-run impact
matrix A−10 , yielded two provisional candidates: one for a “monetary policy

17An explanation of this result, suggested by Sims (1992), links the reaction of the mon-
etary policy authority to anticipated inflationary pressures, which creates a statistical illusion
of a causal relationship between monetary policy shocks and subsequent price increases. Our
MS-SVAR model, estimated and presented in this subsection, is intended for statistical iden-
tification of shocks, and is not designed to test Sims’ hypothesis.

18Although the US model in this subsection is estimated using log-differenced real per
capita output, the posterior impulse response functions in the first row of Figure 5 show the
accumulated (level) responses of output to different shocks. The same convention applies to
the euro area and Estonian economy models in this section.
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Figure 5: Posterior impulse responses with point-wise 68% credible sets for
the US data

shock” (first in the system) and another for a “money demand shock” (last
in the system). Looking at the estimated reactions of the model variables in
the first column of Figure 5, a response profile consistent with contractionary
monetary policy shocks is evident: the policy rate increase leads to a reduction
in real money balances, a drop in real output and the “price puzzle” reaction of
the inflation rate noted earlier.19 This reaction would be typical for a monetary
policy shock considered in the studies by Sims (1992), Christiano et al. (1999)
and Sims and Zha (2006), among many others. The last column in Figure 5
depicts the reactions of the model variables to our “money demand shock”: an
increase in real money balances leads to a delayed reaction of the policy rate,
and a strong positive and persistent response of the real output and prices. This
reaction profile corroborates the recent finding in Favara and Giordani (2009)
and lends further support for the hypothesis that, contrary to the standard New
Keynesian framework, money demand shocks, which may be linked to widen-
ing of term spreads, increasing stock returns or exchange rate deprecations,
lead to well-pronounced responses of real macroeconomic aggregates.20

A pair of hitherto unidentified shocks present a challenge for interpreting

19The “price puzzle” in our posterior impulse responses is robust to alternative model
specifications. In particular, it remains virtually unchanged if we replace real output growth
with de-trended output, as suggested in Giordani (2004). Adding a global commodity price
index to the list of model variables makes the initial response of inflation to our “monetary
policy shock” smaller, so its 68% posterior credible set now contains zero, but it still remains
sufficiently large for the subsequent two to four quarters to be taken as a credible evidence in
favour of the “price puzzle”.

20Andres, Lopez-Salido and Nelson (2009) re-visit the role of money in the New Keynesian
framework, finding that certain variations of these structural macroeconomic models imply a
forward-looking character of the real money balances, helping to predict future variations in
the natural interest rate and other real aggregates.
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the results when our identification methodology fails to deliver clear-cut short-
run impacts and impulse responses due to the insufficient statistical informa-
tion in the volatility regimes. In particular, the posterior impulse responses in
the two middle columns of Figure 5 are not sharp enough for us to discern
confidently the statistical effects of the two shocks on real output and prices.
However, judging by the median responses of yt and πt, the second column
is consistent with a positive “aggregate demand shock”, pushing output and
prices in the same direction and inducing a pronounced reaction of the mone-
tary authority after an initial delay. Using similar arguments, we identify the
third shock in our systems as a positive “aggregate supply shock”, where the
median reactions of output and inflation have the opposite signs. Our estimates
suggest that the Federal Reserve may react to the aggregate supply shock by
increasing the policy rate, although the identification issues in our model cast
some doubt on the statistical reliability of this finding.

In summary, we apply the four-variate two-state MS-SVAR model from
Section 2 to the US macroeconomic series, uncovering a convincing concili-
ation of high and low-volatility states over the last half century of data. The
switching volatility regimes allow us to draw out short-run impacts and im-
pulse responses of four structural shocks, which we label a “monetary policy
shock”, a “money demand shock”, an “aggregate demand shock” and an “ag-
gregate supply shock”. The statistical identification of the first two shocks is
found to be reliable and delivers empirical results that appear to corroborate
many previous findings on monetary policy and money shocks. In particu-
lar, we report a robust and well-pronounced “price puzzle” in response to our
“monetary policy shock”, while our “money demand shock” induces a strong
response of real output and prices in the US data. While the statistical iden-
tification of the other two shocks in our system is less sharp, the estimated
impulse response profiles provide enough evidence to justify their labeling as
“aggregate supply” and “aggregate demand” shocks. Finally, we point out that
the results of our statistical shock identification procedure are not always com-
patible with the traditional short-run and sign identification schemes used in
much of the recent literature on SVAR models.

4.2. The euro area monetary policy

The empirical evidence on the Great Moderation and the time-varying volatil-
ity of macroeconomic shocks in the EA is more muted, given the number of
institutional changes in Europe in the post-war period. Using a retrospective
dataset on the core EA countries, the European Commission documents a pic-
ture of the Great Moderation in the EA similar to that in the US since the early
1970s; see Cabanillas and Ruscher (2008). Rubio-Ramirez et al. (2005) find
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Figure 6: EA macroeconomic data series

that a reduced-form VAR model with switching volatility of shocks and time-
invariant conditional mean parameters provides the best fit to the retrospective
EA macroeconomic data dating from the early 1970s onwards. As in the pre-
vious subsection, we use this empirical evidence to apply our statistical shock
identification method from Section 2 to a recent sample of the aggregate EA
data, without imposing any a priori identifying restrictions.

The EA macroeconomic data is quarterly, covering the time period from
1995Q2 to 2012Q4.21 Per capita aggregates are computed using the working
age population, defined as residents from 16 to 65 years of age.22 All series are
computed in the same way as for the US data in Subsection 4.1 and displayed
in Figure 6:

• Output growth rate (∆yt) is defined as scaled quarter-on-quarter log real
GDP per capita changes;

• Inflation rate (πt) is defined as scaled quarter-on-quarter log changes of
HICP index;

• Monetary policy rate (rt) is taken to be equal to the three month EURIBOR
interest rate.

Like in the previous subsection, we have estimated a two-state MS-SVAR
model with three autoregressive lags. The augmentation is selected taking
into account that real output enters the model in log differences. The usual

21The data are sourced from the European Commission’s Eurostat homepage
epp.eurostat.ec.europa.eu

22Retrospective population data and projections are taken from the European Commis-
sion’s AMECO database at ec.europa.eu/economy_finance/ameco
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Figure 7: Average of simulated ST trajectories for the EA data

information criteria suggest the lag order of two (using the Akaike Information
Criteria) or one (using the Bayesian Information Criteria), but this may not be
enough to capture fully the time series dynamics in the data. However, the
results in this subsection are not sensitive to the reduced augmentation and
continue to hold in the model with two autoregressive lags. Priors on the
EA model parameters are similar to those in Subsection 4.1, apart from the
slightly modified Wishart prior hyper-parameters on Σ(1) and Σ(2), given by
C(1) = 0.310 · I, C(2) = 0.155 · I, τ(1) = 12, and τ(2) = 6.

The average of the simulated ST trajectories is shown in Figure 7. In this
figure, state 1 represents the high volatility state, clearly associated with the
recent Global Financial Crisis and the subsequent European sovereign debt
crisis.23 Our estimated state probabilities are for the most part similar to the
findings of Rubio-Ramirez et al. (2005), but we do not capture an elevated
probability of a high volatility regime around the dot-com bubble in the start
of the 2000s. In general, given that the EA sample is already small, the dearth
of high volatility shocks in our model may present a problem for the statistical
identification of the MS-SVAR parameters.

The prior and posterior distributions of the diagonal elements d1(2), . . . ,
d3(2) of matrix D(2) are depicted in Figure 8. While the data are again seen
to be sufficiently informative, we check the local identification of our MS-
SVAR model by computing the 68% and 90% posterior credible sets of D(2),
which are shown in Table 2. It can be seen that not all elements may be
statistically distinct, as the intervals of d1(2) and d2(2) mutually overlap in the
68% and 90% cases, and the same holds true for d2(2) and d3(2). However,

23Note that the posterior median of d3(2) in Figure 8 is close to unity: the variance of
this shock is therefore similar across the two states. However, state 1 is still a “high volatility
state” in our interpretation owing to the elevated volatility of the other two shocks.
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Table 2: 68% and 90% posterior credible sets of D(2) for the EA data

D(2) 68% set 90% set
d1(2) [0.0135, 0.1450] [0.0133, 0.1916]
d2(2) [0.0618, 0.3661] [0.0423, 0.5490]
d3(2) [0.2240, 2.2251] [0.1806, 2.8247]

0 0.5 1
0

2

4

6

8

10

12

d
1
(2)

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

d
2
(2)

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
d

3
(2)

Figure 8: Prior (dashed line) and posterior (solid line) distributions of D(2)
for the EA data

d1(2) and d3(2) appear to be sufficiently far apart in the 68% case. This is
a clear indication that there may not be enough information in the estimated
volatility regimes to identify all the parameters and disentangle all the shocks
in the EA data. Bearing this in mind, we still take a closer look at the posterior
short-run impacts and impulse response functions in the hope of getting a fuller
view of economically interpretable shocks in the EA sample.

In the application to the EA data we normalize the short-run impact matrix
A−10 such that the initial effects of the first shock on ∆yt (column one of
A−10 ), of the second shock on rt (column two of A−10 ), and of the third shock
on πt (column three of A−10 ) are all positive. Again, this normalization selects
the strongest estimated initial effects of shocks on the corresponding model
variables, providing a convenient starting point for the subsequent analysis.

The prior and posterior distributions of the elements in A−10 are shown in
Figure 9. If the distribution of initial effects in the last row of A−10 are ex-
amined, a “monetary policy shock” candidate can be spotted: only the second
shock pushes the policy rate up on impact, while the other two shocks do not
appear to sway rt in any particular direction in the first instance. In addition
to this, the estimated posterior short-run impacts in our EA model on Figure 9
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Figure 9: Prior (dashed line) and posterior (solid line) distributions of A−10 for
the EA data

allow us to discern an “aggregate demand shock” and an “aggregate supply
shock” by their opposite effects on ∆yt when the prices are pushed up. We
also note slight bi-modality of the posterior distributions in the middle column
of A−10 , which may point to potential identification issues with the second
shock in our model.

The estimated posterior impulse response functions for our EA model are
shown in Figure 10. Overall, the estimated response profiles in Figure 10
confirm our provisional shock labels, pinned down earlier in this subsection.
From the effect of the first shock, designated previously as an “aggregate de-
mand shock”, it can be seen that both output and inflation are pushed up for a
period of few quarters, while the policy rate reacts after an initial delay, seen
as a counteractive monetary policy measure by the European Central Bank to
demand pressures in the EA economy. The second shock, corresponding to
our discretionary “monetary policy shock”, pushed up the policy rate, leading
to lower real output and prices, although the estimated effects are not sharp
due to identification issues. Again, this reaction would be typical for a mon-
etary policy shock, consistent with earlier empirical evidence for the EA in
Peersman and Smets (2001) and Angeloni, Kashyap and Mojon (2003), and
a more recent study by Weber, Gerke and Worms (2011), all obtained using
the conventional identification schemes. Finally, the third shock, designated
as an “aggregate supply shock” on the basis of its short-run impact, induces
a strong and persistent response of real output and inflation in opposite direc-
tions, while the European Central Bank, as expected, does not counteract a
supply shock using its policy instrument.

The conventional zero and sign restrictions used in the empirical monetary
policy studies appear to have stronger support in the EA data than in Subsec-

24



0 5 10 15 20
−1

0

1

y t

Demand shock

0 5 10 15 20
−0.5

0

0.5

Monetary policy shock

0 5 10 15 20
−0.4

−0.2

0

Supply shock

0 5 10 15 20
−0.2

0
0.2
0.4
0.6
0.8

π t

0 5 10 15 20
−0.4
−0.2

0
0.2
0.4

0 5 10 15 20

0

0.1

0.2

0 5 10 15 20
−0.4
−0.2

0
0.2
0.4
0.6

r t

0 5 10 15 20
−0.2

0
0.2

0.4

0 5 10 15 20
−0.15

−0.1
−0.05

0
0.05

Figure 10: Posterior impulse responses with point-wise 68% credible sets for
the EA data

tion 4.1. In the case of the “monetary policy shock” in our MS-SVAR model,
we find that the instantaneous reactions of output and prices are close to zero,
even though this result may be affected by the identification issues due to in-
sufficient volatility information in the data. On the other hand, our findings
suggest a strong initial co-movement of output and prices in the case of aggre-
gate supply and demand shocks, which is not fully compatible with the usual
recursive identification schemes.

In summary, an application of our statistical shock identification methodol-
ogy to the EA data delivers a full set of discernible structural shocks, which we
label an “aggregate demand shock”, an “aggregate supply shock” and a discre-
tionary “monetary policy shock”. As in the case of the US data in Subsection
4.1, the estimated posterior reactions of the EA macroeconomic aggregates to
the identified shocks are mostly in line with the empirical literature, although
we point out that the conventional SVAR identification scheme may not be
fully compatible with the data. However, some of our findings in this subsec-
tion may be affected by the scarce volatility regimes in the EA data sample.

4.3. Response of the Estonian economy to an exogenous risk
premium shock

In the final application of our statistical shock identification methodol-
ogy, laid out in Section 2, we investigate the response of the main Esto-
nian macroeconomic aggregates to an exogenous interest rate (risk) premium
shock. To this end, we consider a small-scale trivariate MS-SVAR model with
two volatility states, resembling the one in Subsection 4.2. Because the Es-
tonian economy is a part of the EA, with an integrated financial system and
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a business cycle strongly linked to the common EA monetary policy, we as-
sume that the policy actions of the European Central Bank transmit fully to
the Estonian economy. Over and above the EA short term rates we assume the
existence of an exogenous country-specific interest rate premium, manifesting
itself as a spread between the Estonian and EA short-term rates, in the spirit
of an incomplete market model with modified UIP condition, as in Schmitt-
Grohe and Uribe (2003), Gelain and Kulikov (2011) and others.24 However,
we do not make any structural assumptions about the dynamics of the exoge-
nous risk premium, instead relying on the in-sample volatility regimes and
our MS-SVAR methodology to reveal the responses of model variables to the
identified structural shocks.

The Estonian (EE) macroeconomic data are quarterly, covering the time
period from 1995Q2 to 2012Q4, and are obtained from the same database and
pre-processed in a identical way to the EA series in Subsection 4.2. Figure 11
depicts the following three Estonian variables:

• Output growth rate (∆yt) is defined as scaled quarter-on-quarter log real
GDP per capita changes;

• Inflation rate (πt) is defined as scaled quarter-on-quarter log changes of
the HICP index;

• Risk premium (ωt) is defined as the spread between the three month
Estonian interbank rate and the corresponding EURIBOR rate.25

As in Subsections 4.1 and 4.2, the EE model is estimated with two volatility
states and three autoregressive lags. The information criteria suggest an aug-
mentation order of four (using the Akaike Information Criteria) and one (using
the Bayesian Information Criteria) for the EE sample. We use a compromise
between the two information criteria, considering that the output enters the
model in log differences. Again, our findings are robust to the augmenta-
tion choice, and continue to hold for models with up to four autoregressive

24Prior to becoming a full EA member in 2011, Estonia had a currency board-based mon-
etary system, initially anchored to the Deutsche Mark and later to the euro, with free capital
mobility and no independent monetary policy. After the domestic banking crisis in the second
half of the 1990s and the ensuing domination of Scandinavian banks in the local market, the
spreads between Estonian and EA interest rates started to narrow, reflecting strong economic
growth and an inflow of foreign capital. During the 2007–2009 Global Financial Crisis, which
saw the collapse of the property market and a severe business cycle downturn, the spreads in-
creased again due to general macroeconomic and financial sector risks; see Dabušinskas and
Randveer (2011).

25Reliable statistical data on the term structure of Estonian interbank rates is available only
from 1996 to 2010, and the remaining parts of the series are pieced together from different
data sources. Details are available from the authors on request.
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Figure 12: Average of simulated ST trajectories for the EE data

lags. The priors are similar to those in Subsection 4.1, apart from the altered
Wishart prior hyper-parameters on Σ(1) and Σ(2), which are now given by
C(1) = 0.0510 · I, C(2) = 0.0255 · I, τ(1) = 10, and τ(2) = 5.

The average of the simulated ST trajectories is shown in Figure 12. In this
figure, state 1 corresponds to the high volatility state associated with some tur-
bulent periods in Estonian macroeconomic history since the mid-1990s. The
high volatility period early in the sample is linked to the Asian and Russian
financial crises of 1997–1998, and the ensuing domestic banking crisis. The
second highly volatile period is associated with the recent Global Financial
Crisis and the resulting gyrations in the domestic business cycle. The volatility
information in the EE sample appears to be richer than the EA data in Subsec-
tion 4.2, giving us a better outlook for disentangling shocks in the estimated
MS-SVAR model.26

26A rather different set of dynamics of the volatility regimes in the EA and EE samples,
depicted in Figures 7 and 12 respectively, frustrated our attempts to estimate a joint MS-SVAR
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Figure 13: Prior (dashed line) and posterior (solid line) distributions of D(2)
for the EE data

Table 3: 68% and 90% posterior credible sets of D(2) for the EE data

D(2) 68% set 90% set
d1(2) [0.0012, 0.0078] [0.0012, 0.0097]
d2(2) [0.0470, 0.3052] [0.0279, 0.3550]
d3(2) [0.1651, 1.7388] [0.1651, 2.5463]

Local identification of the two-state MS-SVAR model depends on the sep-
aration of diagonal elements of the D(2) matrix; the corresponding conditions
have to be checked on a case-by-case basis. The prior and posterior distribu-
tions of d1(2), . . . , d3(2) for the EE sample are depicted in Figure 13; Table 3
shows the corresponding 68% and 90% posterior credible sets. The credible
sets of d1(2) and d2(2), and of d1(2) and d3(2) do not intersect even at the
90% level, and therefore the statistical information available in the estimated
volatility regimes should make it possible to disentangle at least two shocks in
this application. Selecting the strongest estimated initial effects of the shocks,
we normalize the short-run impact matrix as follows: the first shock has a pos-
itive initial effect on ωt in column one of A−10 , the second shock has a positive
initial effect on ∆yt in column two of A−10 , and the third shock has a positive
initial effect on πt in the last column of A−10 .

The prior and estimated posterior distributions of the initial shock effects
are shown in Figure 14. Only the first shock appears to push the risk premium
away from zero on impact, making it our primary candidate for an exoge-

model of the EA and EE economies, which is necessary for a detailed picture of the common
EA monetary policy impact on the Estonian economy to be gained.
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nous “risk premium shock” in the estimated model. The next two shocks in
this application affect real output and prices in a way that makes their label-
ing relatively straightforward: the second one pushes output and prices in the
same direction, just as an “aggregate demand shock” would be expected to
do, while the third one is consistent with an “aggregate supply shock” that in-
creases prices and lowers the output in the economy. The initial risk premium
reaction in the last two columns of Figure 14 is, however, ambiguous — its
time dynamics, crucial for a robust economic interpretation of the model, are
looked at next.

The estimated posterior impulse responses are displayed in Figure 15. The
most interesting set of results in this figure comes from the endogenous reac-
tion of the risk premium to the “aggregate demand” and “aggregate supply”
shocks, and the dynamic effect of the “risk premium shock” on the rest of the
model. Starting from the latter, we see that an exogenous increase in the in-
terest rate premium (over and above the common EA monetary policy effect
on the short-term rates) leads to a strong and persistent negative effect on real
output, while the inflation response remains muted. Another instance where
our model delivers a dynamic reaction of ωt is associated with the “aggre-
gate demand shock”: an upturn in the Estonian economy, perhaps stemming
from increased optimism among consumers and investors, or inflow of capital,
induces a delayed but pronounced positive response of the risk premium, pro-
viding an endogenous counteraction similar to the debt-elastic interest rates
in the Schmitt-Grohe and Uribe (2003) small open economy model. On the
other hand, our empirical results indicate no reaction of ωt in response to the
“aggregate supply shock”, which leads to a drop in real output due to an in-
creased price level, owing for example to cost-push shocks or increased price
mark-ups.

In summary, our estimated two-state MS-SVAR model for the Estonian
economy delivers a consistent and well-defined set of shocks and dynamic re-
sponses of the main macroeconomic aggregates over the sample period 1995Q2
to 2012Q4. The rich volatility dynamics in the EE data series helped us to
uncover three structural shocks, which appear to fit a theoretically sound nar-
rative of exogenous “risk premium”, “aggregate demand” and “aggregate sup-
ply” shocks. The empirical results in this subsection will prove useful in future
revisions of the macroeconomic models for the Estonian economy.

5. Conclusion

SVARs are popular tools in modern macroeconomics, used as an empirical
benchmark for understanding the nature of business cycles and for the devel-
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opment of new theories. Since their widespread adoption in the early 1980s,
the on-going theoretical and empirical research has focused on the most ap-
propriate identification strategies for different macroeconomic shocks.

In this paper we contribute to the literature on shock identification by de-
veloping a Bayesian estimator for the MS-SVAR model with time-varying
volatility of structural innovations that depend on a hidden Markov process.
With sufficient statistical information in the data, distinct volatility states of
the innovations admit identification of all structural SVAR matrices and im-
pulse response functions, without the need for conventional a priori parame-
ter restrictions. We give mathematical identification conditions and propose a
flexible Gibbs sampling approach for the posterior inference on the MS-SVAR
parameters.

The new methodology is validated using the US, EA and Estonian macroe-
conomic series, where the effects of different shocks are examined. For the US
data, we estimate the short-run impacts and impulse responses of four struc-
tural shocks, which we label a “monetary policy shock”, a “money demand
shock”, an “aggregate demand shock” and an “aggregate supply shock”. We
find a robust and well-pronounced “price puzzle” in response to a “monetary
policy shock”, while the “money demand shock” induces a strong reaction in
US real output and prices. The application of our statistical shock identifica-
tion methodology to the EA data delivers a full set of discernible structural
shocks, which we label an “aggregate demand shock”, an “aggregate supply
shock” and a discretionary “monetary policy shock”. As with the US data, the
estimated posterior responses of the EA macroeconomic aggregates are found
to be in line with the empirical literature. Finally, in application to the Estonian
economy, we uncover three structural shocks, which appear to fit a theoreti-
cally sound narrative of exogenous “risk premium”, “aggregate demand” and
“aggregate supply” shocks. We find that an exogenous increase in the inter-
est rate premium in the Estonian data leads to a strong and persistent negative
effect on real output, while the inflation response remains muted.

We also point out that the results of our statistical shock identification pro-
cedure are not always compatible with traditional short run and sign identifi-
cation schemes used in much of the recent literature on SVAR models, which
warrants further careful validation and checking of the existing results using
the new MS-SVAR methodology and other alternative approaches.
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