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Introduction

Time series research on long temperature series (univariate)

>

Harvey and Mills (2003) (the monthly Central England
temperature (CET) series, 1723-2000; considerations based on
time-aggregated quarterly and annual data)

Vogelsang and Franses (2005) (the CET series, 1659-2000,
and a Dutch (De Bilt) series, 1706-1993)

Proietti and Hillebrand (2017) (the CET series, 1772-2013)
He et al. (2019) (the CET series, 1772-2016)

Hillebrand and Proietti (2017) (16 monthly European and 2

North American series, from the 18th century to (mostly)
2010s)



Introduction

Time series research on long temperature series (multivariate)

» He et al. (2021) (3 monthly European and 2 Chinese series
(Beijing and Shanghai), around 1830-2018)

» He et al. (in press) (20 monthly European series, around
1750-2015)



Introduction

Perhaps the best known irregularly periodic climate phenomenon:
the El Nifio Southern Oscillation (ENSO) that has large effects on
the weather in North and South America, and Australia.

» The strength of the ENSO is measured by the Southern
Oscillation Index (SOI). The SOI is computed from
fluctuations in the surface air pressure difference between
Tahiti (in the Pacific) and Darwin, Australia (by the Indian
Ocean)



Introduction

European counterpart of ENSO: the North Atlantic Oscillation
(NAO) that affects the weather in Europe.

» The NAO index is based on the surface sea-level air pressure
difference between the Subtropical (Azores) High and the
Subpolar (Iceland) Low.

» There are different definitions of the index, available for
different time periods.



Introduction

European counterpart of ENSO: the North Atlantic Oscillation
(NAO) that affects the weather in Europe.

» The NAO index is based on the surface sea-level air pressure
difference between the Subtropical (Azores) High and the
Subpolar (Iceland) Low.

» There are different definitions of the index, available for
different time periods.

» In this work, we attempt at building a nonlinear time series
model for characterising effects of the NAO on European
temperatures over time (1823-2015).



The VSSMC-AR-X model

The model is an extended version of the Vector Seasonal Shifting
Mean and Covariance Autoregressive (VSSMC-AR) model (He et
al., in press), called VSSMC-AR-X model.

Notation:

>

Yskts = (V1,5k+s» - YN Sk+s)  is the N x 1 vector of
endogenous variables

Xsk+s the exogenous variable (can be generalised but only one
exogenous variable in the application)

s =1,..., S denotes the season (in the application the month)
k=0,1,.., K — 1, is the period (the year) counter

t = Sk + s is rescaled between zero and one, so the tth
observation is indexed as uxs = (Sk+s)/SK.



The VSSMC-AR-X model

Notation (continued)

> DQBH is a seasonal dummy variable: D§J2+s =1 for j = s,
zero otherwise.

» To maintain this notation for observations lagged by h seasons
(months), i.e., t = Sk +s — h, we adopt the modulo based
equivalent representation t = Sk + sp.

» Thus, k = |(Sk+s—h—1)/S] for k=0,1,...,K —1, and
sy =s— h (mod S). The residue system modulo S in this
definition is the set {1,...,S}.



The VSSMC-AR-X model

The mean equation

The mean equation of the VSSMC-AR-X model is defined as
follows:

S

, p
YSk+s = Z{‘Sj(ukj) +¢10X5k+j}ng)+s + E{q)hySZJrsh
j=1 h=1

s
()
T Z; PinXsk+j, DSJk—i-s} + €sk4s
J:

p

= Js(uks) + ¢50X5k+5 + Z{‘bhysﬂsh + ¢shX5;+sh}
h=1

+Esk+s. (1)



The VSSMC-AR-X model

The mean equation

In (1),
» @, is an N x N parameter matrix, and
> q)jh, h=0,1,...,p; j=1,...,S, are N x 1 parameter vectors.
> &skts is the N X 1 vector of independent errors with

Eeskis = 0 and Eeskysxskqs = 0.

> Xskis is at least weakly exogenous to the parameters in (1).



The VSSMC-AR-X model

The mean equation

In (1),
» @, is an N x N parameter matrix, and
> q)jh, h=0,1,...,p; j=1,...,S, are N x 1 parameter vectors.
> &skts is the N X 1 vector of independent errors with
Eesk+s = 0 and Eesgqsxsk+s = 0.
> Xskis is at least weakly exogenous to the parameters in (1).
» Roots of [Iy — Y7_; @,2"| = 0 lie outside the unit circle.



The VSSMC-AR-X model

The mean equation

The deterministic time-varying intercept vector of the
VSSMC-AR-X model for season s equals

Os(uks) = (0s1(uks), -, Osn(uks))’, where the sth time-varying
coefficient &4 (uks) of equation / is defined as

dsl

b1 (uks) = Osi0 + Y _, sii&sti (Uks: Vsiir Csli)- (2)
i=1



The VSSMC-AR-X model

The mean equation

The deterministic time-varying intercept vector of the
VSSMC-AR-X model for season s equals

Os(uks) = (0s1(uks), -, Osn(uks))’, where the sth time-varying
coefficient &4 (uks) of equation / is defined as

gs/
(Ss/(uks) = dq0 + Z (ss/igs/i(uks? Vsiiv Cs/i)- (2)
i=1
In (2), the transition function is either logistic,
gs/i(”ks? Vsii» Cs/i) = (1 + eXP{_')’s/i(“kS - Cs/i)}rl (3)
or exponential,
gsli (Uks: Yoiis Csti) = 1 — exp{—y; (uks — i)} (4)

In (3) and (4), vy >0, fori=1,..,9qyand s=1,..,S.



The VSSMC-AR-X model

The covariance equation

The error term &g, of the VSSMC-AR-X model is decomposed
as Eskts = zgﬁsgsm, where {g, o ~ iid(0, ly), and

/
Lst+s = Eeskis€skrs = DstrsPsksDsiys (5)

see Bollerslev (1990), where

» Dgy,s is a diagonal matrix of standard deviations and

» Psiys is a positive definite correlation matrix.

Dsk1s and Pgiys may vary both with s and k.



The VSSMC-AR-X model

The covariance equation

Specifically, Dsk+s = diag(os1(uks), ..., sy (Us)), where

Is|
Ug/(uks) = Ui/o + Z Wi Gsli (Uks; ’YS;): Cs(l‘;)) (6)
i=1
for [=1,..,N. In (6),

&sii (Uks; ’Yg/,)’ _cf/,)) =(1+ eXP{—’YS;)(Uks - C_E/‘,{))})_l (7)

or
gs”(uks ,)/£/I)' S(/I)) 1 - exp{ ()/sll)<uk5 - Cs(ll))z}' (8)

In (7) and (8), v\¥) > 0,i=1,...ry;s=1,...,S.

sli



The VSSMC-AR-X model

The covariance equation

Positivity condition for (6):
e V) ()
v v
a§,0 + Zwsligsli(r v Veli v Coli ) >0
i=1

for Vr € [0,1],s and k.



The VSSMC-AR-X model

The covariance equation

The time-varying error correlation matrix P, in (5) for season s
has the following form, see, for example, He et al. (2021),

Psirs = {1— & (uks) P (o) + 8% (ks )P 2y} 9)

where P ;1) and P () are N X N positive definite correlation
matrices for season s.



The VSSMC-AR-X model

The covariance equation

In (9),
(p)

(p) ( )v CS(P)) _ (1+exp{—’y£p)(uks — ¢l )})*1

8s (Uks; ')’sp (10)

or

(p) (o) CS(P)) —1_ exp{—’ygp)(uks . CS(P))2}_

gs' (uks: s, (11)

» Since both (10) and (11) are bounded between zero and one,
as a convex combination of two positive definite correlation
matrices Pg,s is positive definite for all Sk + s.



The VSSMC-AR-X model

The covariance equation

» NOTE: In the application, Pgx1s = Ps.

» (Another simplification: @, h =1, ..., p, in the mean
equation are diagonal matrices.)



The VSSMC-AR-X model

Testing linearity of the mean equation

Before fitting the VSSMC-AR-X model to the data, it is necessary
to test linearity.

» From the point of view of the application, one has to know
whether or not the temperature series are nonstationary.

» From the statistical point of view, testing is necessary because
the /th equation is not identified if the linearity hypothesis
Osi(ugs) = 0 in (2) holds for any s =1,...,S.

Example:

Ssi(uks) = st + Is1 (1 + exp{ —vg1 (uks — csi1) 1) L.



The VSSMC-AR-X model

Testing linearity of the mean equation

» The test is based on approximating the alternative with a
Taylor expansion around the null hypothesis v ; = 0, see
Luukkonen et al. (1988).

» That is, testing zero transitions against one let Ho: 7, = 0
and use the approximation (in this example a third-order one)

~ £¥ * * 2 * 3
(55/(u/<5) ~ (SsIO + 55/1 Ugs + 55/2 Ujs + 55/3 Ugs-

This results in a new null hypothesis Hj:
8ty = 8%, = 853 = 0. Can be tested by a standard x2-test.



The VSSMC-AR-X model

Testing linearity of the mean equation

Testing is carried out in stages as in He et al. (in press).
» First test the null hypothesis against one transition, i.e.,
gss = 1 in (2). Do this separately for s =1, ..., S.

» If the null hypothesis is rejected for at least one s, estimate
the equation with one transition and for the seasons with one

transition, test against two.
» Proceed until the first non-rejection.



The VSSMC-AR-X model

ML estimation of parameters

» Estimate the mean equation first, then the variances and
correlations.

» The variances and correlations are estimated jointly (no
two-stage estimation).

» Constancy of variances has to be tested before estimating the
variance equations (identification problem).

» Asymptotic properties of ML estimators, see He et al. (in

press).



The VSSMC-AR-X model

Joint estimation of variance and correlation parameters

Notation:

> va) = (Bg)/, 95\,‘/5)/)/, s=1,..., S, is the vector of variance
parameters for season s, 92‘2), n=1,..., N, is the vector of
parameters for season s in the nth equation

> eﬁc) is the vector of parameters in the correlation matrix
Psirs = Psiss (65).



The VSSMC-AR-X model

Joint estimation of variance and correlation parameters

For season s, estimation proceeds as follows (Silvennoinen and
Terdsvirta, in press).

1. Estimate the parameters in 0 = (65‘;)', 65\)/5)/)’, s=1,..,5,
equation by equation, assuming P5k+5(6gc)) = ly. Denote the

estimate 5_2”'1) = (Ag‘;'l)/, ...,@5\}/5'1)/)’. This means that the

deterministic components aﬁs(uks), n=1,..., N, have been
estimated once.

2. Estimate P5k+5(6£6)), given va) = ﬁﬁv'”, s=1,...,S. This

requires a separate iteration because P5k+5(9£6)) is nonlinear in

parameters, see (9), and (10) or (11). Denote the estimate

~(c,1
P5k+s(9§ ))-



The VSSMC-AR-X model

Joint estimation of variance and correlation parameters

8L )) This

3. Re-estimate 6§V) assuming P5k+5(0( )) = Pskis(0,
yields eﬁv) = §£V'2)
va) = 5£V'2). Iterate until convergence. Let the result after R;
iterations be eﬁ” = 5§V'R1) and P5k+s(6£C)) = P5k+5(0(c Rl)).

This completes the first iteration of the algorithm.
~(v,R1)

4. Re-estimate first the mean parameters given eﬁ
, s =1,..., S, then jointly variance and correlation

c,R
P5k+s(6( 1)) (R
v ~(v,R c c.R
(v) (v.Rr) and P5k+5(6§ )) = Psiq5(0, ' )

. Then re-estimate P5k+5(6§ )) given

and

parameters using 0s ' = 0,
as starting values for the latter. This completes the second
iteration of the algorithm.

5. lterate until convergence (means, variances, correlations).



The data

28 weather stations in Europe, monthly time series for the years
1823-2015

» from Paris in the west to Kazan in the east,

» from Arkhangelsk in the north to Milan in the south,

» stations with data available from 1823 but with rather large
numbers of missing variables were not included.



The data

28 weather stations in Europe, monthly time series for the years
1823-2015

» from Paris in the west to Kazan in the east,

» from Arkhangelsk in the north to Milan in the south,

» stations with data available from 1823 but with rather large
numbers of missing variables were not included.

» (Tallinn not included: the series begins 1828 with gaps
1876-1880 and 1916-1920.)



The data

Figure: Map showing the locations of the 28 cities and towns from
Arkhangelsk in the north to Milan in the south
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Densities of temperature series
Trondheim, Uppsala, Stockholm, Copenhagen, Vilnius, Berlin, Warsaw and De Bilt

trondheim uppsala stoc kholm copenha gen
30

EITLCEP = YL - CLCT I YL

-10

30 30 30 30

-10

Figure: Densities (histograms) by month of eight temperature series,
ordered by latitude, from Trondheim to De Bilt. Source: He et al. (in
press)



The data

1850

1900 1950 2000
Figure: The monthly North Atlantic Oscillation index 1823-2015.
Source: Jones, Jénsson and Wheeler (1997), extended to 2015.
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Results in the literature

y: is nonstationary and dynamic
x¢ is stationary (and dynamic)

» Hurrell and van Loon (1997), Hurrell (1996):
Estimate B, from y; = By + Byx: + e:, where t is the
aggregate for winter months

» Osborn (2011):
Estimate B, from y; = B, + B,x: + €; by month (a separate
equation for each month)

> lles and Hegerl (2017):
Estimate 61 from x; = &g + d1y: + ef (they have a dense grid;
they probably mean regressing y on x)



Results from the VSSMC-AR model (He et al., in press)

Shifting means by month, North

00 Dec Mar 150 Jun Sep
T a0 —/—aaw 90 BER
10 —— wan| 140 BER
waw 30 80 VAW
20 5RO crH| 130 wan
URP| 20 / 1
120 70
30 cPH
10 | ] N ~
40 ——————Fm| 60
00
100 B EEEEEEE R
50 10 —_— B —— 7]
750 1800 180 100 1950 2000 70 1800 1850 100 1950 2000 50 1800 1850 100 1950 2000 150 1800 1850 1900 1950 2000
Jan Apr Jul Oct
5B BER| 150 BER BER
10 80 way 30 _/
y WA 140 v e WAW
20 wAW 79 40 /vpu
180 = /
30 @ 60 PAL GPH 30
78 o
- * \/ - B w
50 /7 40 10 10
RO _—
S0 te0 80 1900 1950 2000 S0 1e0 180 1900 1950 2000 0 180 180 100 1950 2000 150 1800 1850 1900 1950 2000

Figure: Estimated monthly temperature shifts for the locations in North.
From north to south: Trondheim (TRO), Uppsala (UPP), Stockholm
(STO), Copenhagen (CPH), Vilnius (VIL), Berlin (BER) and Warsaw
(WAW).
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Results from the VSSMC-AR

Shifting means by month, West

model (He et al., in press)
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Figure: Estimated monthly temperature shifts for the locations in West.
From west to east: Paris (PAR), De Bilt (DeB), Karlsruhe (KAR),
Stuttgart (STU), Munich (MUN) and Regensburg (REG).
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Results from the VSSMC-AR model (He et al., in press)

Shifting means by month, East-South
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Figure: Estimated monthly temperature shifts for the locations in
East/South. From west to east: Milan (MIL), Hohenpeissenberg (HPB),
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Budapest (BUD).
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Results from the VSSMC-AR-X model

The shifting mean: Klagenfurt
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Results from the VSSMC-AR-X model

Seasonal averages of coefficent estimates of x;

. Top left: Winter
(Dec-Feb), Top right: Spring (Mar-May), Bottom left: Summer
(Jun-Aug), Bottom right. Autumn (Sep-Nov)
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Results from the VSSMC-AR-X model
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Estimates of the coefficient of x; over the year in (1): Dashed lines:
North/Northwest (Arkhangelsk, Bergen, Trondheim, Uppsala, Stockholm,
Copenhagen, De Bilt, Berlin), Dotted lines: East (Kyiv, St Petersburg,

Wroclaw, Warsaw, Vilnius, Kazan), Solid lines: South (the remaining 14
stations) e

it
N
yel
?



Results from the VSSMC-AR-X model

Bergen kholm
104
054 054 /\/\/
00 00

Estimates of the coefficient of x; over the year in (1), solid line; 50%
confidence level, dark green; 95% confidence level, light green.

North/Northwest: Top panel: Bergen and Stockholm, Bottom panel:
Copenhagen and Arkhangelsk




Results from the VSSMC-AR-X model

Vilnius Warsaw

(

Estimates of the coefficient of x; over the year in (1), solid line, 50%
confidence level dark green, 95% confidence level, light green.
North/Northeast: Top panel: Vilnius and Warsaw, Bottom panel: Kyiv
and Kazan
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Results from the VSSMC-AR-X model

Paris Stuttgart
10| 10|
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Estimates of the coefficient of x; over the year in (1), solid line; 50%
confidence level, dark green; 95% confidence level, light green. West:
Top panel: Paris and Stuttgart, Bottom panel: Karlsruhe and Munich
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Results from the VSSMC-AR-X model

Geneva Klagenfurt

Milan p

Dec Jan Feb Mar Apr May Jun Ju Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jn Ji Aug Sep Oct Nov

Estimates of the coefficient of x; over the year in (1), solid line; 50%
confidence level, dark green; 95% confidence level, light green.
South/Southeast: Top panel: Geneva and Klagenfurt, Bottom panel:
Milan and Budapest
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Results from the VSSMC-AR-X model

Time-varying standard deviations
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4 30 25 30
3 25 20— 25
20 15 20
2 S e
15 T 10 15
—_— 0
1 1.0 05 10
1850 1900 1950 2000 1850 1900 1950 2000 1850 1900 1950 2000 1850 1900 1950 2000
Jan Apr dul oct
4 30 25 30
. 25 2g ——————————— 25
—_ 20 15 [ 20
.
1.5 1.0 15
1 1.0 05 10
1850 1900 1950 2000 1850 1900 1950 2000 1850 1900 1950 2000 1850 1900 1950 2000
Feb May Aug Nov
4 30 25 30
5 25 20 25
— 20 15 =
fr——
2 ———
———— 15 k 0
———————=% =
1 10 05 10
1850 1900 1950 2000 1850 1900 1950 2000 1850 1900 1950 2000 1850 1900 1950 2000
~ Arkhangelsk = Berlin = DeBilt ~—— Trondheim —— Bergen = Copenhagen = Stockholm == Uppsala

Standard deviation estimates: North (Arkhagelsk, Berlin, De Bilt,

Trondheim, Copenhagen, Stockholm, Uppsala)
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Results from the VSSMC-AR-X model

Time-varying standard deviations
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Standard deviation estimates: Southeast (Brno-Turany, Innsbruck,
Vienna, Budapest, Karlsruhe, Milan)
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Results from the VSSMC-AR-X model

Time-varying standard deviations
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Results from the VSSMC-AR-X model

Time-varying standard deviations
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Error correlations: Spatial relationships

Generalise Haslett and Raftery (1989):
> d,-?’s = latitudinal (north-south) distance between stations /
and j
> dEW longitudinal (east-west) distance between stations i
and J
> dé-" = absolute difference in elevation between stations / and j

> pg; = residual correlation between stations i and j for month s
Minimise

QL) = min(D; — as oxp{ (B ) + B + Bld)})

s

where a; is the 'nugget effect’ (Haslett and Raftery, 1989)



Error correlations: Spatial relationships

Correlation
Correlation

Correlation
Correlation

1 2 3 1 2 3
North-south distance (km, 000's) East-west distance (km, 000's)

Estimated correlations and residual correlations against distance (in
1000K). (i) December: Top left: north-south, top right: east-west,
(ii) June: Bottom left: north-south, bottom right: east-west
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Error correlations: Spatial relationships

Correlations vs. absolute differences in elevation

» Statistically significant (but weak) relationship during the
extended winter (Nov-Mar).

» No relationship for the remaining months.



Conclusions

» The NAO affects the weather in Europe:

» The effect is strongest in the winter and declines (not
monotonically) towards the summer.
» The winter effect is stronger in northern latitudes than in the

south.
» In the summer the effect is still significantly different from zero

in the west, not so in the east.

» The estimated model makes it possible to

» forecast temperatures given forecasts on the NAO
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Conclusions

» The NAO affects the weather in Europe:

» The effect is strongest in the winter and declines (not
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Conclusions

» The NAO affects the weather in Europe:

» The effect is strongest in the winter and declines (not
monotonically) towards the summer.

» The winter effect is stronger in northern latitudes than in the
south.

» In the summer the effect is still significantly different from zero
in the west, not so in the east.

» The estimated model makes it possible to

» forecast temperatures given forecasts on the NAO (Warning!)
» run counterfactuals (e.g., what happens to temperatures if
instead of 'high’ NAO there is 'low’ NAO?)

» Distances between pairs of weather stations have a weak
effect on error correlations.



Future work

» Climatologists know that the NAO also affects precipitation,
at least in the winter.
» The VSSMC-AR-X model may be applied to investigating

» seasonality, nonlinearity and nonstationarity of long monthly
European precipitation series,
» the effects of the NAO on precipitation using such series.

» This investigation has just begun.
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