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Introduction

Time series research on long temperature series (univariate)

I Harvey and Mills (2003) (the monthly Central England
temperature (CET) series, 1723-2000; considerations based on
time-aggregated quarterly and annual data)

I Vogelsang and Franses (2005) (the CET series, 1659-2000,
and a Dutch (De Bilt) series, 1706-1993)

I Proietti and Hillebrand (2017) (the CET series, 1772-2013)
I He et al. (2019) (the CET series, 1772-2016)
I Hillebrand and Proietti (2017) (16 monthly European and 2
North American series, from the 18th century to (mostly)
2010s)



Introduction

Time series research on long temperature series (multivariate)

I He et al. (2021) (3 monthly European and 2 Chinese series
(Beijing and Shanghai), around 1830-2018)

I He et al. (in press) (20 monthly European series, around
1750-2015)



Introduction

Perhaps the best known irregularly periodic climate phenomenon:
the El Niño Southern Oscillation (ENSO) that has large e¤ects on
the weather in North and South America, and Australia.

I The strength of the ENSO is measured by the Southern
Oscillation Index (SOI). The SOI is computed from
�uctuations in the surface air pressure di¤erence between
Tahiti (in the Paci�c) and Darwin, Australia (by the Indian
Ocean)



Introduction

European counterpart of ENSO: the North Atlantic Oscillation
(NAO) that a¤ects the weather in Europe.

I The NAO index is based on the surface sea-level air pressure
di¤erence between the Subtropical (Azores) High and the
Subpolar (Iceland) Low.

I There are di¤erent de�nitions of the index, available for
di¤erent time periods.

I In this work, we attempt at building a nonlinear time series
model for characterising e¤ects of the NAO on European
temperatures over time (1823�2015).



Introduction

European counterpart of ENSO: the North Atlantic Oscillation
(NAO) that a¤ects the weather in Europe.

I The NAO index is based on the surface sea-level air pressure
di¤erence between the Subtropical (Azores) High and the
Subpolar (Iceland) Low.

I There are di¤erent de�nitions of the index, available for
di¤erent time periods.

I In this work, we attempt at building a nonlinear time series
model for characterising e¤ects of the NAO on European
temperatures over time (1823�2015).



The VSSMC-AR-X model

The model is an extended version of the Vector Seasonal Shifting
Mean and Covariance Autoregressive (VSSMC-AR) model (He et
al., in press), called VSSMC-AR-X model.
Notation:

I ySk+s = (y1,Sk+s , ..., yN ,Sk+s )0 is the N � 1 vector of
endogenous variables

I xSk+s the exogenous variable (can be generalised but only one
exogenous variable in the application)

I s = 1, ...,S denotes the season (in the application the month)
I k = 0, 1, ..,K � 1, is the period (the year) counter
I t = Sk + s is rescaled between zero and one, so the tth
observation is indexed as uks = (Sk + s)/SK .



The VSSMC-AR-X model

Notation (continued)

I D(j)Sk+s is a seasonal dummy variable: D
(j)
Sk+s = 1 for j = s,

zero otherwise.
I To maintain this notation for observations lagged by h seasons
(months), i.e., t = Sk + s � h, we adopt the modulo based
equivalent representation t = Sek + sh.

I Thus, ek = b(Sk + s � h� 1)/Sc for k = 0, 1, ...,K � 1, and
sh = s � h (mod S). The residue system modulo S in this
de�nition is the set f1, ...,Sg.



The VSSMC-AR-X model
The mean equation

The mean equation of the VSSMC-AR-X model is de�ned as
follows:

ySk+s =
S

∑
j=1
fδj (ukj ) +φj0xSk+jgD

(j)
Sk+s +

p

∑
h=1

fΦhySek+sh
+

S

∑
j=1

φjhxSek+jhD(j)Sk+sg+ εSk+s

= δs (uks ) +φs0xSk+s +
p

∑
h=1

fΦhySek+sh +φshxSek+shg
+εSk+s . (1)



The VSSMC-AR-X model
The mean equation

In (1),

I Φh is an N �N parameter matrix, and
I φjh, h = 0, 1, ..., p; j = 1, ...,S , are N � 1 parameter vectors.
I εSk+s is the N � 1 vector of independent errors with
EεSk+s = 0 and EεSk+sxSk+s = 0.

I xSk+s is at least weakly exogenous to the parameters in (1).

I Roots of jIN �∑p
h=1 Φhzh j = 0 lie outside the unit circle.
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The VSSMC-AR-X model
The mean equation

The deterministic time-varying intercept vector of the
VSSMC-AR-X model for season s equals
δs (uks ) = (δs1(uks ), ..., δsN (uks ))0, where the sth time-varying
coe¢ cient δsl (uks ) of equation l is de�ned as

δsl (uks ) = δsl0 +
qsl

∑
i=1

δsligsli (uks ;γsli , csli ). (2)

In (2), the transition function is either logistic,

gsli (uks ;γsli , csli ) = (1+ expf�γsli (uks � csli )g)�1 (3)

or exponential,

gsli (uks ;γsli , csli ) = 1� expf�γsli (uks � csli )2g (4)

In (3) and (4), γsli > 0, for i = 1, ..., qsl and s = 1, ...,S .
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The VSSMC-AR-X model
The covariance equation

The error term εSk+s of the VSSMC-AR-X model is decomposed
as εSk+s = Σ1/2

Sk+sζSk+s , where ζSk+s � iid(0, IN ), and

ΣSk+s = EεSk+sε
0
Sk+s = DSk+sPSk+sDSk+s (5)

see Bollerslev (1990), where

I DSk+s is a diagonal matrix of standard deviations and
I PSk+s is a positive de�nite correlation matrix.

DSk+s and PSk+s may vary both with s and k.



The VSSMC-AR-X model
The covariance equation

Speci�cally, DSk+s = diag(σs1(uks ), ..., σsN (uks )), where

σ2sl (uks ) = σ2sl0 +
rsl

∑
i=1

ωsligsli (uks ;γ
(v )
sli , c

(v )
sli ) (6)

for l = 1, ...,N. In (6),

gsli (uks ;γ
(v )
sli , c

(v )
sli ) = (1+ expf�γ

(v )
sli (uks � c

(v )
sli )g)

�1 (7)

or
gsli (uks ;γ

(v )
sli , c

(v )
sli ) = 1� expf�γ

(v )
sli (uks � c

(v )
sli )

2g. (8)

In (7) and (8), γ
(v )
sli > 0, i = 1, ..., rsl ; s = 1, ...,S .



The VSSMC-AR-X model
The covariance equation

Positivity condition for (6):

σ2sl0 +
rsl

∑
i=1

ωsligsli (r ;γ
(v )
sli , c

(v )
sli ) > 0

for 8r 2 [0, 1], s and k.



The VSSMC-AR-X model
The covariance equation

The time-varying error correlation matrix PSk+s in (5) for season s
has the following form, see, for example, He et al. (2021),

PSk+s = f1� g (ρ)s (uks )gP(s1) + g
(ρ)
s (uks )P(s2)g (9)

where P(s1) and P(s2) are N �N positive de�nite correlation
matrices for season s.



The VSSMC-AR-X model
The covariance equation

In (9),

g (ρ)s (uks ;γ
(ρ)
s , c

(ρ)
s ) = (1+ expf�γ

(ρ)
s (uks � c (ρ)s )g)�1 (10)

or

g (ρ)s (uks ;γ
(ρ)
s , c

(ρ)
s ) = 1� expf�γ

(ρ)
s (uks � c (ρ)s )2g. (11)

I Since both (10) and (11) are bounded between zero and one,
as a convex combination of two positive de�nite correlation
matrices PSk+s is positive de�nite for all Sk + s.



The VSSMC-AR-X model
The covariance equation

I NOTE: In the application, PSk+s = Ps .
I (Another simpli�cation: Φh, h = 1, ..., p, in the mean
equation are diagonal matrices.)



The VSSMC-AR-X model
Testing linearity of the mean equation

Before �tting the VSSMC-AR-X model to the data, it is necessary
to test linearity.

I From the point of view of the application, one has to know
whether or not the temperature series are nonstationary.

I From the statistical point of view, testing is necessary because
the lth equation is not identi�ed if the linearity hypothesis
δsl (uks ) = δsl0 in (2) holds for any s = 1, ...,S .

Example:

δsl (uks ) = δsl0 + δsl1(1+ expf�γsl1(uks � csl1)g)�1.



The VSSMC-AR-X model
Testing linearity of the mean equation

I The test is based on approximating the alternative with a
Taylor expansion around the null hypothesis γsli = 0, see
Luukkonen et al. (1988).

I That is, testing zero transitions against one let H0: γsl1 = 0
and use the approximation (in this example a third-order one)

δsl (uks ) � δ�sl0 + δ�sl1uks + δ�sl2u
2
ks + δ�sl3u

3
ks .

This results in a new null hypothesis H00:
δ�sl1 = δ�sl2 = δ�sl3 = 0. Can be tested by a standard χ2-test.



The VSSMC-AR-X model
Testing linearity of the mean equation

Testing is carried out in stages as in He et al. (in press).

I First test the null hypothesis against one transition, i.e.,
qsl = 1 in (2). Do this separately for s = 1, ...,S .

I If the null hypothesis is rejected for at least one s, estimate
the equation with one transition and for the seasons with one
transition, test against two.

I Proceed until the �rst non-rejection.



The VSSMC-AR-X model
ML estimation of parameters

I Estimate the mean equation �rst, then the variances and
correlations.

I The variances and correlations are estimated jointly (no
two-stage estimation).

I Constancy of variances has to be tested before estimating the
variance equations (identi�cation problem).

I Asymptotic properties of ML estimators, see He et al. (in
press).



The VSSMC-AR-X model
Joint estimation of variance and correlation parameters

Notation:

I θ
(v )
s = (θ

(v )0
1s , ..., θ

(v )0
Ns )

0, s = 1, ...,S , is the vector of variance

parameters for season s, θ
(v )
ns , n = 1, ...,N, is the vector of

parameters for season s in the nth equation

I θ
(c )
s is the vector of parameters in the correlation matrix
PSk+s = PSk+s (θ

(c )
s ).



The VSSMC-AR-X model
Joint estimation of variance and correlation parameters

For season s, estimation proceeds as follows (Silvennoinen and
Teräsvirta, in press).

1. Estimate the parameters in θ
(v )
s = (θ

(v )0
1s , ..., θ

(v )0
Ns )

0, s = 1, ...,S ,

equation by equation, assuming PSk+s (θ
(c )
s ) = IN . Denote the

estimate bθ(v ,1)s = (bθ(v ,1)01s , ...,bθ(v ,1)0Ns )0. This means that the
deterministic components σ2ns (uks ), n = 1, ...,N, have been
estimated once.

2. Estimate PSk+s (θ
(c )
s ), given θ

(v )
s = bθ(v ,1)s , s = 1, ...,S . This

requires a separate iteration because PSk+s (θ
(c )
s ) is nonlinear in

parameters, see (9), and (10) or (11). Denote the estimate

PSk+s (bθ(c ,1)s ).



The VSSMC-AR-X model
Joint estimation of variance and correlation parameters

3. Re-estimate θ
(v )
s assuming PSk+s (θ

(c )
s ) = PSk+s (bθ(c ,1)s ). This

yields θ
(v )
s = bθ(v ,2)s . Then re-estimate PSk+s (θ

(c )
s ) given

θ
(v )
s = bθ(v ,2)s . Iterate until convergence. Let the result after R1
iterations be θ

(v )
s = bθ(v ,R1)s and PSk+s (θ

(c )
s ) = PSk+s (bθ(c ,R1)s ).

This completes the �rst iteration of the algorithm.

4. Re-estimate �rst the mean parameters given bθ(v ,R1)s and

PSk+s (bθ(c ,R1)s ), s = 1, ...,S , then jointly variance and correlation

parameters using θ
(v )
s = bθ(v ,R1)s and PSk+s (θ

(c )
s ) = PSk+s (bθ(c ,R1)s )

as starting values for the latter. This completes the second
iteration of the algorithm.

5. Iterate until convergence (means, variances, correlations).



The data

28 weather stations in Europe, monthly time series for the years
1823�2015

I from Paris in the west to Kazan in the east,
I from Arkhangelsk in the north to Milan in the south,
I stations with data available from 1823 but with rather large
numbers of missing variables were not included.

I (Tallinn not included: the series begins 1828 with gaps
1876�1880 and 1916�1920.)
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The data

Figure: Map showing the locations of the 28 cities and towns from
Arkhangelsk in the north to Milan in the south



Densities of temperature series
Trondheim, Uppsala, Stockholm, Copenhagen, Vilnius, Berlin, Warsaw and De Bilt
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Figure: Densities (histograms) by month of eight temperature series,
ordered by latitude, from Trondheim to De Bilt. Source: He et al. (in
press)



The data

Figure: The monthly North Atlantic Oscillation index 1823�2015.
Source: Jones, Jónsson and Wheeler (1997), extended to 2015.



Results in the literature

yt is nonstationary and dynamic
xt is stationary (and dynamic)

I Hurrell and van Loon (1997), Hurrell (1996):
Estimate β1 from yt = β0 + β1xt + et , where t is the
aggregate for winter months

I Osborn (2011):
Estimate β1 from yt = β0 + β1xt + et by month (a separate
equation for each month)

I Iles and Hegerl (2017):
Estimate δ1 from xt = δ0 + δ1yt + e 0t (they have a dense grid;
they probably mean regressing y on x)



Results from the VSSMC-AR model (He et al., in press)
Shifting means by month, North

Figure: Estimated monthly temperature shifts for the locations in North.
From north to south: Trondheim (TRO), Uppsala (UPP), Stockholm
(STO), Copenhagen (CPH), Vilnius (VIL), Berlin (BER) and Warsaw
(WAW).



Results from the VSSMC-AR model (He et al., in press)
Shifting means by month, West

Figure: Estimated monthly temperature shifts for the locations in West.
From west to east: Paris (PAR), De Bilt (DeB), Karlsruhe (KAR),
Stuttgart (STU), Munich (MUN) and Regensburg (REG).



Results from the VSSMC-AR model (He et al., in press)
Shifting means by month, East-South

Figure: Estimated monthly temperature shifts for the locations in
East/South. From west to east: Milan (MIL), Hohenpeissenberg (HPB),
Innsbruck (INN), Kremsmünster (KRE), Vienna (VIE), Brno (BRN) and
Budapest (BUD).



Results from the VSSMC-AR-X model
The shifting mean: Klagenfurt



Results from the VSSMC-AR-X model

Seasonal averages of coe¢ cent estimates of xt . Top left: Winter
(Dec-Feb), Top right: Spring (Mar-May), Bottom left: Summer
(Jun-Aug), Bottom right. Autumn (Sep-Nov)



Results from the VSSMC-AR-X model

Estimates of the coe¢ cient of xt over the year in (1): Dashed lines:
North/Northwest (Arkhangelsk, Bergen, Trondheim, Uppsala, Stockholm,
Copenhagen, De Bilt, Berlin), Dotted lines: East (Kyiv, St Petersburg,
Wroclaw, Warsaw, Vilnius, Kazan), Solid lines: South (the remaining 14
stations)



Results from the VSSMC-AR-X model

Estimates of the coe¢ cient of xt over the year in (1), solid line; 50%
con�dence level, dark green; 95% con�dence level, light green.
North/Northwest: Top panel: Bergen and Stockholm, Bottom panel:
Copenhagen and Arkhangelsk



Results from the VSSMC-AR-X model

Estimates of the coe¢ cient of xt over the year in (1), solid line, 50%
con�dence level dark green, 95% con�dence level, light green.
North/Northeast: Top panel: Vilnius and Warsaw, Bottom panel: Kyiv
and Kazan



Results from the VSSMC-AR-X model

Estimates of the coe¢ cient of xt over the year in (1), solid line; 50%
con�dence level, dark green; 95% con�dence level, light green. West:
Top panel: Paris and Stuttgart, Bottom panel: Karlsruhe and Munich



Results from the VSSMC-AR-X model

Estimates of the coe¢ cient of xt over the year in (1), solid line; 50%
con�dence level, dark green; 95% con�dence level, light green.
South/Southeast: Top panel: Geneva and Klagenfurt, Bottom panel:
Milan and Budapest



Results from the VSSMC-AR-X model
Time-varying standard deviations

Standard deviation estimates: North (Arkhagelsk, Berlin, De Bilt,
Trondheim, Copenhagen, Stockholm, Uppsala)



Results from the VSSMC-AR-X model
Time-varying standard deviations

Standard deviation estimates: Southeast (Brno-Turany, Innsbruck,
Vienna, Budapest, Karlsruhe, Milan)



Results from the VSSMC-AR-X model
Time-varying standard deviations

Standard deviation estimates: Southwest (Geneve, Klagenfurt,
Paris, Stuttgart, Hohenpeissenberg, Munich, Regensburg



Results from the VSSMC-AR-X model
Time-varying standard deviations

Standard deviation estimates: East (Kazan, St Petersburg,
Warsaw, Kyiv, Vilnius, Wroclaw)



Error correlations: Spatial relationships

Generalise Haslett and Raftery (1989):

I dNSij = latitudinal (north-south) distance between stations i
and j

I dEWij = longitudinal (east-west) distance between stations i
and j

I dHij = absolute di¤erence in elevation between stations i and j
I bρsij = residual correlation between stations i and j for month s

Minimise

Q(c )s = min
θ
(c )
s

(bρsij � αs expf�(βNSs dNSij + βEWs dEWij + βHs d
H
ij )g)2

where αs is the �nugget e¤ect�(Haslett and Raftery, 1989)



Error correlations: Spatial relationships

Estimated correlations and residual correlations against distance (in
1000K). (i) December: Top left: north-south, top right: east-west,
(ii) June: Bottom left: north-south, bottom right: east-west



Error correlations: Spatial relationships

Correlations vs. absolute di¤erences in elevation

I Statistically signi�cant (but weak) relationship during the
extended winter (Nov-Mar).

I No relationship for the remaining months.



Conclusions

I The NAO a¤ects the weather in Europe:
I The e¤ect is strongest in the winter and declines (not
monotonically) towards the summer.

I The winter e¤ect is stronger in northern latitudes than in the
south.

I In the summer the e¤ect is still signi�cantly di¤erent from zero
in the west, not so in the east.

I The estimated model makes it possible to
I forecast temperatures given forecasts on the NAO

(Warning!)
I run counterfactuals (e.g., what happens to temperatures if
instead of �high�NAO there is �low�NAO?)

I Distances between pairs of weather stations have a weak
e¤ect on error correlations.
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Future work

I Climatologists know that the NAO also a¤ects precipitation,
at least in the winter.

I The VSSMC-AR-X model may be applied to investigating
I seasonality, nonlinearity and nonstationarity of long monthly
European precipitation series,

I the e¤ects of the NAO on precipitation using such series.

I This investigation has just begun.
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